
Tomas Knapen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413373/publications.pdf Version: 2024-02-01

TOMAS KNADEN

#	Article	IF	CITATIONS
1	Decision-related pupil dilation reflects upcoming choice and individual bias. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E618-25.	7.1	297
2	Dynamic modulation of decision biases by brainstem arousal systems. ELife, 2017, 6, .	6.0	218
3	The Role of Frontal and Parietal Brain Areas in Bistable Perception. Journal of Neuroscience, 2011, 31, 10293-10301.	3.6	188
4	GABA Shapes the Dynamics of Bistable Perception. Current Biology, 2013, 23, 823-827.	3.9	176
5	Cognitive and Ocular Factors Jointly Determine Pupil Responses under Equiluminance. PLoS ONE, 2016, 11, e0155574.	2.5	127
6	Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. Annual Review of Psychology, 2018, 69, 77-103.	17.7	109
7	Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception. Nature Neuroscience, 2015, 18, 1672-1678.	14.8	97
8	The reference frame of the tilt aftereffect. Journal of Vision, 2011, 10, 8-8.	0.3	86
9	Multi-Timescale Perceptual History Resolves Visual Ambiguity. PLoS ONE, 2008, 3, e1497.	2.5	83
10	The reference frame of the motion aftereffect is retinotopic. Journal of Vision, 2009, 9, 16-16.	0.3	80
11	Topographic Maps of Visual Space in the Human Cerebellum. Current Biology, 2019, 29, 1689-1694.e3.	3.9	69
12	Interregional alpha-band synchrony supports temporal cross-modal integration. NeuroImage, 2014, 101, 404-415.	4.2	63
13	How pupil responses track value-based decision-making during and after reinforcement learning. PLoS Computational Biology, 2018, 14, e1006632.	3.2	55
14	How Visual Cortical Organization Is Altered by Ophthalmologic and Neurologic Disorders. Annual Review of Vision Science, 2018, 4, 357-379.	4.4	45
15	The spatial scale of perceptual memory in ambiguous figure perception. Journal of Vision, 2009, 9, 16-16.	0.3	36
16	Visuospatial coding as ubiquitous scaffolding for human cognition. Trends in Cognitive Sciences, 2022, 26, 81-96.	7.8	36
17	Global saccadic adaptation. Vision Research, 2010, 50, 1882-1890.	1.4	32
18	Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31

TOMAS KNAPEN

#	Article	IF	CITATIONS
19	A Dissociation of Attention and Awareness in Phase-sensitive but Not Phase-insensitive Visual Channels. Journal of Cognitive Neuroscience, 2010, 22, 2326-2344.	2.3	30
20	Opposite Influence of Perceptual Memory on Initial and Prolonged Perception of Sensory Ambiguity. PLoS ONE, 2012, 7, e30595.	2.5	30
21	Visual Organization of the Default Network. Cerebral Cortex, 2020, 30, 3518-3527.	2.9	29
22	Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing. Cerebral Cortex, 2019, 29, 1969-1983.	2.9	28
23	Dopaminergic medication reduces striatal sensitivity to negative outcomes in Parkinson's disease. Brain, 2019, 142, 3605-3620.	7.6	26
24	Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns. NeuroImage, 2021, 228, 117683.	4.2	25
25	Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention. ELife, 2018, 7, .	6.0	24
26	Removal of monocular interactions equates rivalry behavior for monocular, binocular, and stimulus rivalries. Journal of Vision, 2008, 8, 13-13.	0.3	23
27	Stimulus Motion Propels Traveling Waves in Binocular Rivalry. PLoS ONE, 2007, 2, e739.	2.5	22
28	Oculomotor Remapping of Visual Information to Foveal Retinotopic Cortex. Frontiers in Systems Neuroscience, 2016, 10, 54.	2.5	22
29	Intracranial Recordings Reveal Unique Shape and Timing of Responses in Human Visual Cortex during Illusory Visual Events. Current Biology, 2020, 30, 3089-3100.e4.	3.9	21
30	Divisive normalization unifies disparate response signatures throughout the human visual hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
31	Distance in feature space determines exclusivity in visual rivalry. Vision Research, 2007, 47, 3269-3275.	1.4	19
32	A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2831-2843.	4.3	18
33	Representation of Contralateral Visual Space in the Human Hippocampus. Journal of Neuroscience, 2021, 41, 2382-2392.	3.6	17
34	Disruption of implicit perceptual memory by intervening neutral stimuli. Vision Research, 2007, 47, 2675-2683.	1.4	16
35	Slant perception, and its voluntary control, do not govern the slant aftereffect: Multiple slant signals adapt independently. Vision Research, 2006, 46, 3381-3392.	1.4	14
36	Stimulus flicker alters interocular grouping during binocular rivalry. Vision Research, 2007, 47, 1-7.	1.4	14

TOMAS KNAPEN

#	Article	IF	CITATIONS
37	Individual differences in eye blink rate predict both transient and tonic pupil responses during reversal learning. PLoS ONE, 2017, 12, e0185665.	2.5	13
38	Porcupine: A visual pipeline tool for neuroimaging analysis. PLoS Computational Biology, 2018, 14, e1006064.	3.2	12
39	No Evidence That Frontal Eye Field tDCS Affects Latency or Accuracy of Prosaccades. Frontiers in Neuroscience, 2018, 12, 617.	2.8	10
40	Separable pupillary signatures of perception and action during perceptual multistability. ELife, 2021, 10,	6.0	10
41	Implicit and explicit learning in reactive and voluntary saccade adaptation. PLoS ONE, 2019, 14, e0203248.	2.5	6
42	Learning in Visual Regions as Support for the Bias in Future Value-Driven Choice. Cerebral Cortex, 2020, 30, 2005-2018.	2.9	6
43	Visual cortex activity predicts subjective experience after reading books with colored letters. Neuropsychologia, 2016, 88, 15-27.	1.6	5
44	The visual selectivity of the default mode network. Journal of Vision, 2019, 19, 212.	0.3	3
45	Biologically inspired unification of population receptive field models provides new insights into cortical computations. Journal of Vision, 2020, 20, 377.	0.3	1
46	Through the eyes, fast and slow: behaviourally relevant pupil responses on separate timescales. Journal of Vision, 2016, 16, 85.	0.3	0
47	Attention Improves Stimulus Encoding in Early Visual Cortex. Journal of Vision, 2016, 16, 1306.	0.3	0
48	Spatiotemporal BOLD correlates of switches in bistable perception. Journal of Vision, 2016, 16, 1216.	0.3	0
49	Unreportable switches in bistable perception produce negligible fronto-parietal BOLD activity Journal of Vision, 2016, 16, 1327.	0.3	0
50	Transcranial direct current stimulation of the right frontal eye field to affect saccade execution. Journal of Vision, 2017, 17, 898.	0.3	0
51	Multi-center mapping of human ocular dominance columns with BOLD fMRI. Journal of Vision, 2019, 19, 64b.	0.3	0
52	Topographic maps of visual space in the human cerebellum. Journal of Vision, 2019, 19, 307.	0.3	0
53	Intracranial recordings reveal unique shape and timing of responses in human visual cortex during illusory visual events. Journal of Vision, 2020, 20, 375.	0.3	0