
Veronica Vaida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared spectroscopy of 2-oxo-octanoic acid in multiple phases. Physical Chemistry Chemical Physics, 2022, 24, 6757-6768.	1.3	4
2	Chemistry and Photochemistry of Pyruvic Acid at the Air–Water Interface. Journal of Physical Chemistry A, 2021, 125, 1036-1049.	1.1	29
3	The primary photo-dissociation dynamics of lactate in aqueous solution: decarboxylation prevents dehydroxylation. Physical Chemistry Chemical Physics, 2021, 23, 4555-4568.	1.3	8
4	Kinetic Study of Gas-Phase Reactions of Pyruvic Acid with HO2. Journal of Physical Chemistry A, 2021, 125, 2232-2242.	1,1	4
5	Water–Air Interfaces as Environments to Address the Water Paradox in Prebiotic Chemistry: A Physical Chemistry Perspective. Journal of Physical Chemistry A, 2021, 125, 4929-4942.	1.1	39
6	Lactic Acid Spectroscopy: Intra- and Intermolecular Interactions. Journal of Physical Chemistry A, 2021, 125, 218-229.	1.1	7
7	Gas-Phase Reaction Kinetics of Pyruvic Acid with OH Radicals: The Role of Tunneling, Complex Formation, and Conformational Structure. Journal of Physical Chemistry A, 2020, 124, 790-800.	1.1	15
8	Conformer-Specific Photolysis of Pyruvic Acid and the Effect of Water. Journal of Physical Chemistry A, 2020, 124, 1240-1252.	1,1	21
9	Chemistry and Photochemistry of Pyruvic Acid Adsorbed on Oxide Surfaces. Journal of Physical Chemistry A, 2019, 123, 7661-7671.	1.1	12
10	Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2019, 123, 983-991.	1.1	23
11	Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids. ACS Central Science, 2018, 4, 624-630.	5.3	32
12	Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO ₂ and Water. Journal of Physical Chemistry A, 2018, 122, 4465-4469.	1,1	33
13	Publications of Veronica Vaida. Journal of Physical Chemistry A, 2018, 122, 1168-1174.	1.1	1
14	Reactivity of Electronically Excited SO ₂ with Alkanes. Journal of Physical Chemistry A, 2018, 122, 7782-7789.	1.1	4
15	Photochemical Synthesis of Oligomeric Amphiphiles from Alkyl Oxoacids in Aqueous Environments. Journal of the American Chemical Society, 2017, 139, 6946-6959.	6.6	26
16	Mechanistic Description of Photochemical Oligomer Formation from Aqueous Pyruvic Acid. Journal of Physical Chemistry A, 2017, 121, 4272-4282.	1.1	50
17	Multiphase Photochemistry of Pyruvic Acid under Atmospheric Conditions. Journal of Physical Chemistry A, 2017, 121, 3327-3339.	1.1	57
18	Phenylalanine Increases Membrane Permeability. Journal of the American Chemical Society, 2017, 139, 14388-14391.	6.6	55

#	Article	IF	CITATIONS
19	pH Dependence of the Aqueous Photochemistry of α-Keto Acids. Journal of Physical Chemistry A, 2017, 121, 8368-8379.	1.1	48
20	Atmospheric Simulation Chamber Studies of the Gas-Phase Photolysis of Pyruvic Acid. Journal of Physical Chemistry A, 2017, 121, 8348-8358.	1.1	35
21	Prebiotic phosphorylation enabled by microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12359-12361.	3.3	35
22	Comment on "Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid― Journal of Physical Chemistry A, 2017, 121, 8738-8740.	1.1	4
23	Ultraviolet Spectroscopy of the Gas Phase Hydration of Methylglyoxal. ACS Earth and Space Chemistry, 2017, 1, 345-352.	1.2	19
24	Gas-Phase Photolysis of Pyruvic Acid: The Effect of Pressure on Reaction Rates and Products. Journal of Physical Chemistry A, 2016, 120, 10123-10133.	1.1	41
25	Chemical Equilibria and Kinetics in Aqueous Solutions of Zymonic Acid. Journal of Physical Chemistry A, 2016, 120, 10096-10107.	1.1	30
26	Introduction to the special issue on atmospheric spectroscopy. Journal of Molecular Spectroscopy, 2016, 323, 1.	0.4	0
27	Sunlight as an energetic driver in the synthesis of molecules necessary for life. Physical Chemistry Chemical Physics, 2016, 18, 20067-20084.	1.3	85
28	Atmospheric radical chemistry revisited. Science, 2016, 353, 650-650.	6.0	33
29	The Partitioning of Small Aromatic Molecules to Air–Water and Phospholipid Interfaces Mediated by Non-Hydrophobic Interactions. Journal of Physical Chemistry B, 2016, 120, 7408-7422.	1.2	17
30	Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation. Scientific Reports, 2016, 6, 30000.	1.6	21
31	Interaction of <scp>l</scp> -Phenylalanine with a Phospholipid Monolayer at the Water–Air Interface. Journal of Physical Chemistry B, 2015, 119, 9038-9048.	1.2	47
32	Ocean Sea Spray, Clouds, and Climate. ACS Central Science, 2015, 1, 112-114.	5.3	5
33	Intramolecular Hydrogen Bonding in Methyl Lactate. Journal of Physical Chemistry A, 2015, 119, 9692-9702.	1.1	29
34	Aqueous Interfaces. , 2015, , 115-117.		0
35	Aqueous Phase Oligomerization of Methyl Vinyl Ketone by Atmospheric Radical Reactions. Journal of Physical Chemistry C, 2014, 118, 29421-29430.	1.5	39
36	Photoinitiated Synthesis of Self-Assembled Vesicles. Journal of the American Chemical Society, 2014, 136, 3784-3787.	6.6	47

#	Article	IF	CITATIONS
37	Photochemical Kinetics of Pyruvic Acid in Aqueous Solution. Journal of Physical Chemistry A, 2014, 118, 8505-8516.	1.1	80
38	Intramolecular Interactions in 2-Aminoethanol and 3-Aminopropanol. Journal of Physical Chemistry A, 2013, 117, 10260-10273.	1.1	40
39	Sunlight-initiated Chemistry of Aqueous Pyruvic Acid: Building Complexity in the Origin of Life. Origins of Life and Evolution of Biospheres, 2013, 43, 341-352.	0.8	26
40	lonization state of <scp>l</scp> -Phenylalanine at the Air–Water Interface. Journal of the American Chemical Society, 2013, 135, 710-716.	6.6	59
41	Acetic acid formation via the hydration of gas-phase ketene under ambient conditions. Chemical Physics Letters, 2013, 565, 1-4.	1.2	27
42	Oxidized Aromatic–Aliphatic Mixed Films at the Air–Aqueous Solution Interface. Journal of Physical Chemistry C, 2013, 117, 22341-22350.	1.5	24
43	Photochemistry of aqueous pyruvic acid. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11714-11719.	3.3	118
44	Reply to Eugene et al.: Photochemistry of aqueous pyruvic acid. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4276.	3.3	11
45	Emerging Areas in Atmospheric Photochemistry. Topics in Current Chemistry, 2012, 339, 1-53.	4.0	18
46	Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol. Journal of Chemical Physics, 2012, 136, 164302.	1.2	30
47	Ocean–Atmosphere Interactions in the Emergence of Complexity in Simple Chemical Systems. Accounts of Chemical Research, 2012, 45, 2106-2113.	7.6	62
48	Cavity-Enhanced Measurements of Hydrogen Peroxide Absorption Cross Sections from 353 to 410 nm. Journal of Physical Chemistry A, 2012, 116, 5941-5947.	1.1	34
49	Hydrophobic Collapse of a Stearic Acid Film by Adsorbed I-Phenylalanine at the Air–Water Interface. Journal of Physical Chemistry B, 2012, 116, 7849-7857.	1.2	40
50	Near Infrared Photochemistry of Pyruvic Acid in Aqueous Solution. Journal of Physical Chemistry A, 2012, 116, 5840-5846.	1.1	43
51	In situ observation of peptide bond formation at the water–air interface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15697-15701.	3.3	130
52	Hydration of pyruvic acid to its geminal-diol, 2,2-dihydroxypropanoic acid, in a water-restricted environment. Chemical Physics Letters, 2011, 513, 184-190.	1.2	50
53	Perspective: Water cluster mediated atmospheric chemistry. Journal of Chemical Physics, 2011, 135, 020901.	1.2	254
54	Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6687-6692.	3.3	75

#	Article	IF	CITATIONS
55	Dynamics and spectroscopy of vibrational overtone excited glyoxylic acid and 2,2-dihydroxyacetic acid in the gas-phase. Journal of Chemical Physics, 2010, 132, 094305.	1.2	22
56	Red sky at night: Long-wavelength photochemistry in the atmosphere. Environmental Science & Technology, 2010, 44, 5321-5326.	4.6	23
57	Overtone Spectra of 2-Mercaptoethanol and 1,2-Ethanedithiol. Journal of Physical Chemistry A, 2010, 114, 12692-12700.	1.1	14
58	Characterization of the nitric acid–water complex in the infrared and near-infrared region at ambient temperatures in carbon tetrachloride. Chemical Physics Letters, 2009, 473, 268-273.	1.2	7
59	Spectroscopy of Photoreactive Systems: Implications for Atmospheric Chemistry. Journal of Physical Chemistry A, 2009, 113, 5-18.	1.1	72
60	Fundamental and Overtone Vibrational Spectra of Gas-Phase Pyruvic Acid. Journal of Physical Chemistry A, 2009, 113, 7294-7303.	1.1	61
61	SH-Stretching Vibrational Spectra of Ethanethiol and <i>tert-</i> Butylthiol. Journal of Physical Chemistry A, 2009, 113, 7576-7583.	1.1	33
62	Surface Activity of Perfluorinated Compounds at the Air-Water Interface. ACS Symposium Series, 2009, , 65-77.	0.5	0
63	Dynamics of Vibrational Overtone Excited Pyruvic Acid in the Gas Phase: Line Broadening through Hydrogen-Atom Chattering. Journal of Physical Chemistry A, 2008, 112, 7321-7331.	1.1	74
64	Experimental and Theoretical Study of the OH Vibrational Spectra and Overtone Chemistry of Gas-Phase Vinylacetic Acid. Journal of Physical Chemistry A, 2008, 112, 10226-10235.	1.1	24
65	Vibrational Spectroscopy of Perfluorocarboxylic Acids from the Infrared to the Visible Regions. Journal of Physical Chemistry B, 2008, 112, 276-282.	1.2	9
66	Calculated electronic transitions of the water ammonia complex. Journal of Chemical Physics, 2008, 128, 034302.	1.2	25
67	Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores. International Journal of Photoenergy, 2008, 2008, 1-13.	1.4	26
68	Miscibility of Perfluorododecanoic Acid with Organic Acids at the Airâ^'Water Interface. Journal of Physical Chemistry C, 2007, 111, 9975-9980.	1.5	27
69	Vibrational overtone induced elimination reactions within hydrogen-bonded molecular clusters: the dynamics of water catalyzed reactions in CH2FOH·(H2O)n. Physical Chemistry Chemical Physics, 2007, 9, 3864-3871.	1.3	44
70	Surface Partitioning and Stability of Pure and Mixed Films of 8â^'2 Fluorotelomer Alcohol at the Airâ^'Water Interface. Journal of Physical Chemistry C, 2007, 111, 11612-11618.	1.5	17
71	Overtone Spectroscopy of Sulfonic Acid Derivatives. Journal of Physical Chemistry A, 2007, 111, 5434-5440.	1.1	35
72	Photodissociation yields for vibrationally excited states of sulfuric acid under atmospheric conditions. Geophysical Research Letters, 2007, 34, .	1.5	20

#	Article	IF	CITATIONS
73	Experimental and Theoretical Investigation of Vibrational Overtones of Glycolic Acid and Its Hydrogen Bonding Interactions with Water. Journal of Physical Chemistry A, 2006, 110, 6439-6446.	1.1	41
74	The Influence of Organic Films at the Airâ^'Aqueous Boundary on Atmospheric Processes. Chemical Reviews, 2006, 106, 1445-1461.	23.0	320
75	Permeability of Acetic Acid through Organic Films at the Airâ ʾ Aqueous Interface. Journal of Physical Chemistry A, 2006, 110, 7581-7587.	1.1	42
76	Experimental absolute intensities of the 4ν9 and 5ν9 O–H stretching overtones of H2SO4. Chemical Physics Letters, 2006, 420, 438-442.	1.2	38
77	Interfacial properties of mixed films of long-chain organics at the air–water interface. Atmospheric Environment, 2006, 40, 6606-6614.	1.9	32
78	Molecular complexes in close and far away. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10584-10588.	3.3	104
79	A comparison of experimental and calculated spectra of HNO3 in the near-infrared using Fourier transform infrared spectroscopy and vibrational perturbation theory. Journal of Chemical Physics, 2006, 124, 124323.	1.2	33
80	Temperature-dependent infrared spectra of torsional vibrations in acetic acid. Journal of Molecular Spectroscopy, 2005, 229, 151-157.	0.4	14
81	Gas phase infrared spectroscopic observation of the organic acid dimers (CH3(CH2)6COOH)2, (CH3(CH2)7COOH)2, and (CH3(CH2)8COOH)2. Chemical Physics Letters, 2005, 402, 239-244.	1.2	20
82	Photolysis of sulfuric acid vapor by visible light as a source of the polar stratospheric CN layer. Journal of Geophysical Research, 2005, 110, .	3.3	42
83	Vapor-Phase Vibrational Spectrum of Glycolic Acid, CH2OHCOOH, in the Region 2000â^8500 cm-1. Journal of Physical Chemistry A, 2004, 108, 9069-9073.	1.1	30
84	Chemistry in Prebiotic Aerosols: A Mechanism for the Origin of Life. , 2004, , 153-165.		7
85	Complexes of Importance to the Absorption of Solar Radiationâ€. Journal of Physical Chemistry A, 2003, 107, 10680-10686.	1.1	105
86	Atmospheric Photochemistry via Vibrational Overtone Absorption. Chemical Reviews, 2003, 103, 4717-4730.	23.0	97
87	Vibrational and Electronic Spectroscopy of Sulfuric Acid Vapor. Journal of Physical Chemistry A, 2003, 107, 1112-1118.	1.1	107
88	Hydrated Complexes: Relevance to Atmospheric Chemistry and Climate. International Reviews in Physical Chemistry, 2003, 22, 203-219.	0.9	140
89	The Hydration of Formic Acid. Journal of Physical Chemistry A, 2002, 106, 363-370.	1.1	101
90	New evidence of an organic layer on marine aerosols. Journal of Geophysical Research, 2002, 107, AAC 1-1.	3.3	153

#	Article	IF	CITATIONS
91	Sequential Two-Photon Dissociation of Atmospheric Water. Journal of Physical Chemistry A, 2001, 105, 70-75.	1.1	7
92	Electronic spectroscopy of organic acid dimers. Chemical Physics Letters, 2001, 343, 159-165.	1.2	30
93	Aggregation of water molecules: Atmospheric implications. Journal of Chemical Physics, 2000, 113, 6652-6659.	1.2	50
94	Atmospheric processing of organic aerosols. Journal of Geophysical Research, 1999, 104, 11633-11641.	3.3	408
95	Direct Absorption Spectroscopy of Water Clusters‖. Journal of Physical Chemistry A, 1999, 103, 8620-8624.	1.1	53
96	Organic Peroxyl Radical Photolysis in the Near-Infrared:Â Effects on Tropospheric Chemistry. Journal of Physical Chemistry A, 1999, 103, 10169-10178.	1.1	41
97	Spectroscopic Characterization of Supersonic Molecular Beams. Israel Journal of Chemistry, 1997, 37, 387-393.	1.0	2
98	Measurements of high-resolution ultraviolet-visible absorption cross sections at stratospheric temperatures: 1. Nitrogen dioxide. Journal of Geophysical Research, 1996, 101, 3869-3877.	3.3	15
99	Measurements of high-resolution ultraviolet-visible absorption cross sections at stratospheric temperatures: 2. Chlorine dioxide. Journal of Geophysical Research, 1996, 101, 3879-3884.	3.3	8
100	Uptake of Chlorine Dioxide by Model Polar Stratospheric Cloud Surfaces:  Ultrahigh-Vacuum Studies. The Journal of Physical Chemistry, 1996, 100, 3115-3120.	2.9	33
101	Effect of Dimers on the Temperature-Dependent Absorption Cross Section of Methyl Iodide. The Journal of Physical Chemistry, 1996, 100, 11559-11565.	2.9	33
102	Uptake of Chlorine Dioxide by Model PSCs under Stratospheric Conditions. The Journal of Physical Chemistry, 1996, 100, 3121-3125.	2.9	27
103	Photoreactivity of Oxygen Dimers in the Ultraviolet. The Journal of Physical Chemistry, 1996, 100, 7849-7853.	2.9	33
104	Photooxidation of CS2in the near-ultraviolet and its atmospheric implications. Geophysical Research Letters, 1995, 22, 2609-2612.	1.5	6
105	Atmospheric implications of the photolysis of the ozone-water weakly bound complex. Journal of Geophysical Research, 1995, 100, 18803.	3.3	91
106	Fourier transform spectroscopy of radicals. Advances in Molecular Structure Research, 1995, , 157-199.	0.3	1
107	Direct absorption spectroscopy of the first excited electronic band of jet-cooled H2S. Chemical Physics Letters, 1993, 215, 329-335.	1.2	8
108	Photoreactivity of Molecular Aggregates. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 395-399.	0.9	4

#	Article	IF	CITATIONS
109	The spectroscopy of OCIO in polar liquids. Spectrochimica Acta Part A: Molecular Spectroscopy, 1992, 48, 1293-1301.	0.1	19
110	The direct near ultraviolet absorption spectrum of theÃ 2A2â†X̃ 2B1transition of jetâ€cooled chlorine dioxide. Journal of Chemical Physics, 1991, 94, 153-162.	² 1.2	87
111	Competing photochemical pathways of chlorine oxide (OClO) in polar solution. The Journal of Physical Chemistry, 1991, 95, 6060-6063.	2.9	25
112	Absorption spectroscopy of jet-cooled CS2: the linear excited state at 55741 to 60241 cmâ^'1. Chemical Physics Letters, 1991, 184, 152-158.	1.2	10
113	The photochemical dynamics of theÃ 2A2state of chlorine dioxide. Journal of Chemical Physics, 1991, 94, 163-171.	1.2	70
114	Spectroscopic and photochemical perturbations of weak interactions on electronic surfaces of methyl iodide. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2043.	1.7	13
115	Fourier transform UV/VIS emission spectroscopy of jet-cooled CN(B 2Σ+). Chemical Physics Letters, 1989, 157, 295-299.	1.2	12
116	Photoisomerization of OCIO: a possible mechanism for polar ozone depletion. Nature, 1989, 342, 405-408.	13.7	126
117	Gas-phase photofragmentation of Co3(CO)9CCH3. Organometallics, 1989, 8, 1614-1615.	1.1	2
118	Photodissociation of carbon oxide sulfide and carbon disulfide dimers: competing photochemical pathways. The Journal of Physical Chemistry, 1989, 93, 1836-1840.	2.9	21
119	Fourier transform ultraviolet absorption spectroscopy of jet-cooled chlorine dioxide. The Journal of Physical Chemistry, 1989, 93, 6346-6350.	2.9	28
120	Photodissociation of Gas Phase Metal Clusters. , 1989, , 353-367.		0
121	Application of time-resolved photoacoustic calorimetry to Crî—,L bond enthalpies in Cr(CO)5î—,L. Polyhedron, 1988, 7, 1619-1622.	1.0	42
122	Ultraviolet absorption determination of intramolecular predissociation dynamics in methyl iodide dimers ((CH3I)2 and (CD3I)2). The Journal of Physical Chemistry, 1988, 92, 1204-1208.	2.9	37
123	Surface crossings and predissociation dynamics of methyl iodide Rydberg states. Journal of Chemical Physics, 1988, 88, 7410-7417.	1.2	29
124	Multiphoton ionization study of intra―and intermolecular effects on the photodissociation of methyl iodide. Journal of Chemical Physics, 1988, 88, 3638-3645.	1.2	71
125	Cluster-induced potential shifts as a probe for dissociation dynamics in the (n0-3s) Rydberg state of acetone. The Journal of Physical Chemistry, 1988, 92, 2766-2769.	2.9	45
126	Electronic spectrum of carbon oxide sulfide (OCS) at 62,000-72,000 cm-1. The Journal of Physical Chemistry, 1988, 92, 5875-5879.	2.9	25

#	Article	IF	CITATIONS
127	The (n0-3s) Rydberg state of acetone: absorption spectroscopy of jet-cooled acetone and acetone-d6. The Journal of Physical Chemistry, 1988, 92, 2762-2766.	2.9	54
128	Spectroscopy of the (no-3s) Rydberg state of isolated and clustered acetaldehyde. The Journal of Physical Chemistry, 1988, 92, 5514-5517.	2.9	18
129	Ultraviolet absorption spectroscopy of dissociating molecules: Effects of cluster formation on the photodissociation of CH3I. Journal of Chemical Physics, 1987, 87, 2522-2530.	1.2	84
130	Spectroscopy of Predissociating Molecules. , 1987, , 253-261.		0
131	Dynamics of intermediates in the .alpha and .betaelimination processes in CpW(CO)2Me and CpW(CO)2Et measured on the microsecond time scale. Journal of the American Chemical Society, 1986, 108, 2511-2513.	6.6	17
132	Electronic absorption spectroscopy of jet-cooled molecules. Accounts of Chemical Research, 1986, 19, 114-120.	7.6	38
133	The determination of the manganese-manganese bond strength in Mn2(CO)10 using pulsed time-resolved photoacoustic calorimetry. Organometallics, 1986, 5, 815-816.	1.1	47
134	Strength of the metal-ligand bond in LCr(CO)5 measured by photoacoustic calorimetry. Chemical Physics Letters, 1986, 125, 566-568.	1.2	35
135	Photofragmentation of transition-metal-cluster carbonyls in the gas phase. The Journal of Physical Chemistry, 1986, 90, 1235-1240.	2.9	21
136	The direct ultraviolet absorption spectrum of the A'~A2" .rarw. ~X'A1 transition of jet-cooled ammonia. The Journal of Physical Chemistry, 1984, 88, 3397-3400.	2.9	52
137	Gas-phase multiphoton dissociation of iron carbonyls. The Journal of Physical Chemistry, 1983, 87, 3635-3638.	2.9	9
138	Picosecond dynamics of solution-phase photofragmentation of dimanganese decacarbonyl [Mn2(CO)10]. Journal of the American Chemical Society, 1982, 104, 3536-3537.	6.6	77
139	Medium effects on the photodissociation of hexacarbonylchromium (Cr(CO)6). The Journal of Physical Chemistry, 1982, 86, 1941-1947.	2.9	61
140	Effects of nonresonant ionization on multiphoton ionization line shapes. Journal of Chemical Physics, 1981, 75, 4403-4412.	1.2	13
141	The multiphoton ionization spectra of pyridine and pyrazine. Chemical Physics, 1978, 28, 47-54.	0.9	58
142	Multiphoton transitions in trans-butadiene observed by multiphoton ionization and thermal lensing spectroscopy. Chemical Physics Letters, 1978, 54, 25-29.	1.2	48
143	Local structure and triplet energy migration inp-dichlorobenzene-p-dibromobenzene solid solutions. Molecular Physics, 1978, 35, 965-974.	0.8	13
144	Intermolecular mixing of electronic states in chemically mixed molecular crystals. Journal of Chemical Physics, 1977, 67, 710-714.	1.2	14

#	Article	IF	CITATIONS
145	Singlet and triplet exciton percolation in benzene isotopic mixed crystals. Journal of Chemical Physics, 1977, 67, 4941-4947.	1.2	56
146	Phonon assisted trap–trap triplet energy migration in the O °K limit in crystalline benzene. Journal of Chemical Physics, 1977, 66, 2187-2190.	1.2	21
147	Resolved emission from compound states in chemically mixed crystals. Journal of Chemical Physics, 1976, 64, 4224-4225.	1.2	3
148	Lactic acid photochemistry following excitation of S 0 to S 1 at 220 to 250 nm. Journal of Physical Organic Chemistry, 0, , e4316.	0.9	3