
Michael J Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2, 751-760.	31.5	7,469
2	Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20, 101-124.	46.4	3,154
3	Designing materials for biology and medicine. Nature, 2004, 428, 487-492.	27.8	2,876
4	Impact of Nanotechnology on Drug Delivery. ACS Nano, 2009, 3, 16-20.	14.6	2,760
5	Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery, 2009, 8, 129-138.	46.4	2,639
6	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	13.7	1,957
7	CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell, 2014, 159, 440-455.	28.9	1,566
8	Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 2019, 18, 175-196.	46.4	1,562
9	Nanoparticle Delivery of Cancer Drugs. Annual Review of Medicine, 2012, 63, 185-198.	12.2	1,347
10	Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Reviews Drug Discovery, 2014, 13, 655-672.	46.4	1,261
11	Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021, 6, 1078-1094.	48.7	1,256
12	Bioresponsive materials. Nature Reviews Materials, 2017, 2, .	48.7	1,117
13	Engineering Substrate Topography at the Micro―and Nanoscale to Control Cell Function. Angewandte Chemie - International Edition, 2009, 48, 5406-5415.	13.8	1,109
14	A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology, 2008, 26, 561-569.	17.5	1,076
15	Advances in oligonucleotide drug delivery. Nature Reviews Drug Discovery, 2020, 19, 673-694.	46.4	1,036
16	Treating metastatic cancer with nanotechnology. Nature Reviews Cancer, 2012, 12, 39-50.	28.4	1,023
17	Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile. Science Translational Medicine, 2012, 4, 128ra39.	12.4	978
18	Biodegradable Polymer Scaffolds for Tissue Engineering. Nature Biotechnology, 1994, 12, 689-693.	17.5	921

#	Article	IF	CITATIONS
19	Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17356-17361.	7.1	904
20	Nanostructured materials for applications in drug delivery and tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 241-268.	3.5	897
21	Nanoparticle-Aptamer Bioconjugates. Cancer Research, 2004, 64, 7668-7672.	0.9	873
22	A controlled-release microchip. Nature, 1999, 397, 335-338.	27.8	839
23	Degradable Poly(β-amino esters): Synthesis, Characterization, and Self-Assembly with Plasmid DNA. Journal of the American Chemical Society, 2000, 122, 10761-10768.	13.7	827
24	Lipid-like materials for low-dose, in vivo gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1864-1869.	7.1	776
25	Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 2016, 138, 704-717.	13.7	776
26	Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharmaceutical Research, 1991, 08, 713-720.	3.5	774
27	Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature, 1992, 359, 67-70.	27.8	773
28	Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 2016, 34, 328-333.	17.5	732
29	Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 2015, 14, 643-651.	27.5	700
30	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	17.5	697
31	In vitro and ex vivo strategies for intracellular delivery. Nature, 2016, 538, 183-192.	27.8	662
32	Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nature Biotechnology, 2013, 31, 653-658.	17.5	660
33	Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 2000, 17, 100-106.	3.5	659
34	Engineering Stem Cell Organoids. Cell Stem Cell, 2016, 18, 25-38.	11.1	654
35	Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2586-2591.	7.1	649
36	Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nature Nanotechnology, 2012, 7, 623-629.	31.5	571

#	Article	IF	CITATIONS
37	A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	12.0	570
38	Advances in Biomaterials for Drug Delivery. Advanced Materials, 2018, 30, e1705328.	21.0	565
39	Drug delivery by supramolecular design. Chemical Society Reviews, 2017, 46, 6600-6620.	38.1	551
40	Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7, 117-137.	48.7	550
41	Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research Part B, 1993, 27, 183-189.	3.1	546
42	A Combinatorial Polymer Library Approach Yields Insight into Nonviral Gene Delivery. Accounts of Chemical Research, 2008, 41, 749-759.	15.6	530
43	Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nature Communications, 2017, 8, 777.	12.8	507
44	Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Letters, 2017, 17, 1326-1335.	9.1	506
45	Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnology Progress, 1998, 14, 193-202.	2.6	490
46	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews, 2018, 118, 7409-7531.	47.7	490
47	Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 1999, 64, 580-589.	3.3	473
48	In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotechnology, 2014, 9, 648-655.	31.5	466
49	Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nature Methods, 2014, 11, 106-112.	19.0	466
50	Managing diabetes with nanomedicine: challenges and opportunities. Nature Reviews Drug Discovery, 2015, 14, 45-57.	46.4	459
51	Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. Journal of Cellular Physiology, 1992, 151, 497-505.	4.1	449
52	Semi-Automated Synthesis and Screening of a Large Library of Degradable Cationic Polymers for Gene Delivery. Angewandte Chemie - International Edition, 2003, 42, 3153-3158.	13.8	445
53	Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nature Communications, 2014, 5, 4277.	12.8	431
54	Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature Communications, 2015, 6, 6295.	12.8	425

#	Article	IF	CITATIONS
55	mRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 2016, 7, 319-334.	2.2	414
56	Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nature Biotechnology, 2019, 37, 1174-1185.	17.5	398
57	A vector-free microfluidic platform for intracellular delivery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2082-2087.	7.1	386
58	The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542.	17.5	371
59	Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3955-3960.	7.1	366
60	Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E156-65.	7.1	364
61	Enzymatic Degradation of Glycosaminoglycans. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30, 387-444.	5.2	360
62	Parallel Synthesis and Biophysical Characterization of a Degradable Polymer Library for Gene Delivery. Journal of the American Chemical Society, 2003, 125, 5316-5323.	13.7	353
63	Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4, 499-506.	22.5	353
64	Prevascularization of porous biodegradable polymers. Biotechnology and Bioengineering, 1993, 42, 716-723.	3.3	331
65	Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 2012, 30, 868-875.	17.5	328
66	Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and <i>Toxoplasma gondii</i> challenges with a single dose. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4133-42.	7.1	320
67	Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. , 1998, 42, 417-424.		307
68	Transdermal drug delivery using low-frequency sonophoresis. Pharmaceutical Research, 1996, 13, 411-420.	3.5	305
69	Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Letters, 2020, 20, 1578-1589.	9.1	299
70	An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Science Translational Medicine, 2015, 7, 300ra128.	12.4	288
71	An ingestible self-orienting system for oral delivery of macromolecules. Science, 2019, 363, 611-615.	12.6	287
72	Nanomedicine in the management of microbial infection – Overview and perspectives. Nano Today, 2014, 9, 478-498.	11.9	286

#	Article	IF	CITATIONS
73	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6639-E6648.	7.1	286
74	Formulation and physical characterization of large porous particles for inhalation. Pharmaceutical Research, 1999, 16, 1735-1742.	3.5	285
75	Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. , 1997, 35, 513-523.		271
76	Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnology and Bioengineering, 2000, 67, 217-223.	3.3	270
77	Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. Journal of Orthopaedic Research, 2001, 19, 1098-1104.	2.3	268
78	A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nature Materials, 2015, 14, 1065-1071.	27.5	268
79	Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnology and Bioengineering, 1991, 37, 177-184.	3.3	247
80	Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB Journal, 1998, 12, 1447-1454.	0.5	238
81	Transdermal monitoring of glucose and other analytes using ultrasound. Nature Medicine, 2000, 6, 347-350.	30.7	237
82	Evolution of macromolecular complexity in drug delivery systems. Nature Reviews Chemistry, 2017, 1, .	30.2	233
83	Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. , 1997, 37, 413-420.		217
84	Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nature Biomedical Engineering, 2018, 2, 850-864.	22.5	214
85	Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Advanced Materials, 2019, 31, e1805116.	21.0	212
86	Lipidoid-Coated Iron Oxide Nanoparticles for Efficient DNA and siRNA delivery. Nano Letters, 2013, 13, 1059-1064.	9.1	210
87	Small RNA combination therapy for lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3553-61.	7.1	210
88	Determinants of release rate of tetanus vaccine from polyester microspheres. Pharmaceutical Research, 1993, 10, 945-953.	3.5	207
89	Enzyme thermoinactivation in anhydrous organic solvents. Biotechnology and Bioengineering, 1991, 37, 843-853.	3.3	206
90	Shape-memory polymer networks from oligo(?-caprolactone)dimethacrylates. Journal of Polymer Science Part A, 2005, 43, 1369-1381.	2.3	206

#	Article	IF	CITATIONS
91	Engineering and physical sciences in oncology: challenges and opportunities. Nature Reviews Cancer, 2017, 17, 659-675.	28.4	204
92	<i>In Vivo</i> Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 2015, 9, 3866-3874.	14.6	197
93	An elastic second skin. Nature Materials, 2016, 15, 911-918.	27.5	195
94	Bioprinting the Cancer Microenvironment. ACS Biomaterials Science and Engineering, 2016, 2, 1710-1721.	5.2	194
95	Proton-driven transformable nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1053-1064.	31.5	194
96	Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy. Biomaterials, 1997, 18, 27-30.	11.4	192
97	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	31.5	191
98	Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91, 125-140.	13.7	190
99	Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2401-2406.	7.1	190
100	Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotechnology and Bioengineering, 1992, 40, 895-903.	3.3	187
101	Photopolymerizable degradable polyanhydrides with osteocompatibility. Nature Biotechnology, 1999, 17, 156-159.	17.5	186
102	Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2060-2065.	7.1	185
103	TRAIL-coated leukocytes that kill cancer cells in the circulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 930-935.	7.1	182
104	An ionizable lipid toolbox for RNA delivery. Nature Communications, 2021, 12, 7233.	12.8	182
105	Oral, ultra–long-lasting drug delivery: Application toward malaria elimination goals. Science Translational Medicine, 2016, 8, 365ra157.	12.4	181
106	Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nature Communications, 2018, 9, 2.	12.8	180
107	Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12996-13001.	7.1	178
108	Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharmaceutical Research, 1996, 13, 1378-1383.	3.5	174

#	Article	IF	CITATIONS
109	Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. Advanced Materials, 2017, 29, 1606944.	21.0	174
110	Synthesis and Characterization of in Situ Cross-Linkable Hyaluronic Acid-Based Hydrogels with Potential Application for Vocal Fold Regeneration. Macromolecules, 2004, 37, 3239-3248.	4.8	173
111	Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery. Advanced Materials, 2016, 28, 2939-2943.	21.0	172
112	Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Reports, 2017, 18, 1917-1929.	6.4	167
113	A luminal unfolding microneedle injector for oral delivery of macromolecules. Nature Medicine, 2019, 25, 1512-1518.	30.7	167
114	Transdermal Photopolymerization of Poly (Ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage. Plastic and Reconstructive Surgery, 1999, 104, 1014-1022.	1.4	164
115	Computational and Experimental Models of Cancer Cell Response to Fluid Shear Stress. Frontiers in Oncology, 2013, 3, 44.	2.8	158
116	Moisture-induced aggregation of lyophilized insulin. Pharmaceutical Research, 1994, 11, 21-29.	3.5	153
117	An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Science Translational Medicine, 2015, 7, 284ra57.	12.4	150
118	Magnetically enhanced insulin release in diabetic rats. Journal of Biomedical Materials Research Part B, 1987, 21, 1367-1373.	3.1	148
119	Controlled delivery systems for proteins using polyanhydride microspheres. Pharmaceutical Research, 1993, 10, 487-496.	3.5	148
120	Prolonged energy harvesting for ingestible devices. Nature Biomedical Engineering, 2017, 1, .	22.5	148
121	Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2018, 292, 256-276.	9.9	146
122	Materials for stem cell factories of the future. Nature Materials, 2014, 13, 570-579.	27.5	145
123	Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New Journal of Physics, 2013, 15, 015008.	2.9	143
124	Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials, 2021, 274, 120826.	11.4	143
125	Perspectives and Challenges in Tissue Engineering and Regenerative Medicine. Advanced Materials, 2009, 21, 3235-3236.	21.0	140
126	Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	139

#	Article	IF	CITATIONS
127	Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c–SIRT2 axis. Nature Cell Biology, 2017, 19, 445-456.	10.3	138
128	Transdermal Photopolymerization of Poly (Ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage. Plastic and Reconstructive Surgery, 1999, 104, 1014-1022.	1.4	136
129	Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today, 2017, 16, 82-96.	11.9	136
130	Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 401-409.	3.3	134
131	Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. Journal of Controlled Release, 2017, 262, 284-295.	9.9	134
132	Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials, 2017, 128, 147-159.	11.4	132
133	Design and Synthesis of Waterborne Polyurethanes. Advanced Materials, 2018, 30, e1706237.	21.0	131
134	Hepatocyte culture on biodegradable polymeric substrates. Biotechnology and Bioengineering, 1991, 38, 145-158.	3.3	129
135	Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. Journal of Clinical Investigation, 2017, 127, 3039-3051.	8.2	124
136	Nucleic acid delivery for therapeutic applications. Advanced Drug Delivery Reviews, 2021, 178, 113834.	13.7	122
137	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	6.9	120
138	Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device. Nano Letters, 2021, 21, 5671-5680.	9.1	120
139	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(β-amino ester)s. Molecular Therapy, 2007, 15, 1306-1312.	8.2	118
140	Cooperative Effects of Matrix Stiffness and Fluid Shear Stress on Endothelial Cell Behavior. Biophysical Journal, 2015, 108, 471-478.	0.5	118
141	Chiral Supraparticles for Controllable Nanomedicine. Advanced Materials, 2020, 32, e1903878.	21.0	118
142	The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature Communications, 2016, 7, 11385.	12.8	117
143	Biocompatibility of polymeric delivery systems for macromolecules. Journal of Biomedical Materials Research Part B, 1981, 15, 267-277.	3.1	115
144	Controlled release using a new bioerodible polyphosphazene matrix system. Journal of Biomedical Materials Research Part B, 1987, 21, 1231-1246.	3.1	115

#	Article	IF	CITATIONS
145	Creating biomimetic micro-environments with synthetic polymer-peptide hybrid molecules. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 507-518.	3.5	114
146	Dendrimer-Inspired Nanomaterials for the <i>in Vivo</i> Delivery of siRNA to Lung Vasculature. Nano Letters, 2015, 15, 3008-3016.	9.1	113
147	Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano, 2020, 14, 488-497.	14.6	113
148	Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Molecular Therapy - Nucleic Acids, 2012, 1, e4.	5.1	112
149	Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release, 2019, 316, 404-417.	9.9	111
150	Ionizable lipid nanoparticles for in utero mRNA delivery. Science Advances, 2021, 7, .	10.3	110
151	Tissue engineering: a new field and its challenges. , 1997, 14, 840-841.		108
152	A metalloproteinase inhibitor as an inhibitor of neovascularization. Journal of Cellular Biochemistry, 1991, 47, 230-235.	2.6	107
153	Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS Nano, 2018, 12, 912-931.	14.6	107
154	Triggerable tough hydrogels for gastric resident dosage forms. Nature Communications, 2017, 8, 124.	12.8	106
155	A novel biotinylated degradable polymer for cell-interactive applications. , 1998, 58, 529-535.		104
156	Surface-Initiated Polymerization of l-Lactide:  Coating of Solid Substrates with a Biodegradable Polymer. Macromolecules, 2001, 34, 5361-5363.	4.8	103
157	Transdermal Delivery of Heparin by Skin Electroporation. Nature Biotechnology, 1995, 13, 1205-1209.	17.5	102
158	Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6147-E6156.	7.1	102
159	The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. Journal of Polymer Science Part A, 1993, 31, 2445-2458.	2.3	98
160	Poly(glycoamidoamine) Brushes Formulated Nanomaterials for Systemic siRNA and mRNA Delivery in Vivo. Nano Letters, 2016, 16, 842-848.	9.1	98
161	Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15719-15724.	7.1	97
162	Large porous particles for sustained protection from carbachol-induced bronchoconstriction in guinea pigs. Pharmaceutical Research, 1999, 16, 555-561.	3.5	96

#	Article	IF	CITATIONS
163	Exploiting Electrostatic Interactions in Polymer–Nanoparticle Hydrogels. ACS Macro Letters, 2015, 4, 848-852.	4.8	95
164	Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil. Nature Communications, 2015, 6, 7765.	12.8	95
165	Ultrasound-mediated gastrointestinal drug delivery. Science Translational Medicine, 2015, 7, 310ra168.	12.4	95
166	Live-cell protein labelling with nanometre precision by cell squeezing. Nature Communications, 2016, 7, 10372.	12.8	94
167	Aggregation of a Lyophilized Pharmaceutical Protein, Recombinant Human Albumin: Effect of Moisture and Stabilization by Excipients. Nature Biotechnology, 1995, 13, 493-496.	17.5	92
168	Neutrophil Responses to Sterile Implant Materials. PLoS ONE, 2015, 10, e0137550.	2.5	92
169	Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Scientific Reports, 2015, 5, 10276.	3.3	88
170	Localized delivery of epidermal growth factor improves the survival of transplanted hepatocytes. , 1996, 50, 422-429.		87
171	In vivo versusin vitro degradation of controlled release polymers for intracranial surgical therapy. Journal of Biomedical Materials Research Part B, 1994, 28, 387-395.	3.1	86
172	On the pH memory of lyophilized compounds containing protein functional groups. , 1997, 53, 345-348.		85
173	Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. American Journal of Physiology - Cell Physiology, 2015, 309, C736-C746.	4.6	84
174	Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomaterials Science, 2021, 9, 1449-1463.	5.4	84
175	From Advanced Biomedical Coatings to Multiâ€Functionalized Biomaterials. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 347-375.	2.2	82
176	Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Letters, 2019, 458, 102-112.	7.2	82
177	Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. Journal of Biomedical Materials Research Part B, 1990, 24, 901-911.	3.1	81
178	Endothelial siRNA delivery in nonhuman primates using ionizable low–molecular weight polymeric nanoparticles. Science Advances, 2018, 4, eaar8409.	10.3	81
179	Ionizable Amphiphilic Dendrimerâ€Based Nanomaterials with Alkylâ€Chainâ€Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium Inâ€Vivo. Angewandte Chemie - International Edition, 2014, 53, 14397-14401.	13.8	80
180	Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nature Biomedical Engineering, 2020, 4, 1076-1089.	22.5	80

#	Article	IF	CITATIONS
181	Inhibitors of Angiogenesis. Nature Biotechnology, 1991, 9, 630-634.	17.5	79
182	Synergistic effect of electric field and ultrasound on transdermal transport. Pharmaceutical Research, 1996, 13, 633-638.	3.5	79
183	Synthesis and Characterization of Photo-Cross-Linked Polymers Based on Poly(l-lactic) Tj ETQq1 1 0.784314 rgBT	lQverlock 4.8	10 Tf 50 66
184	Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 893-904.	3.5	79
185	Morphology and mechanical function of long-termin vitro engineered cartilage. , 1999, 44, 217-221.		76
186	Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. Journal of Controlled Release, 2016, 238, 103-113.	9.9	76
187	Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Advanced Materials, 2015, 27, 4006-4012.	21.0	75
188	Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials, 2017, 123, 63-76.	11.4	75
189	Polyanhydrides. IV. Unsaturated and crosslinked polyanhydrides. Journal of Polymer Science Part A, 1991, 29, 571-579.	2.3	73
190	Preliminaryin vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. Journal of Biomedical Materials Research Part B, 1998, 43, 374-379.	3.1	73
191	E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. Journal of Controlled Release, 2012, 160, 609-617.	9.9	72
192	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	9.1	72
193	Physical Biology in Cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells. American Journal of Physiology - Cell Physiology, 2014, 306, C89-C97.	4.6	70
194	A microneedle platform for buccal macromolecule delivery. Science Advances, 2021, 7, .	10.3	70
195	New strategies for the microencapsulation of tetanus vaccine. Journal of Microencapsulation, 1998, 15, 299-318.	2.8	69
196	Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for <i>In Vivo</i> CRISPR/Cas-Based Genome Editing. ACS Nano, 2020, 14, 9243-9262.	14.6	69
197	Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. , 1997, 14, 537-540.		68
198	Human Embryoid Bodies Containing Nano―and Microparticulate Delivery Vehicles. Advanced Materials, 2008, 20, 2285-2291.	21.0	68

#	Article	IF	CITATIONS
199	Biocompatible controlled release polymers for delivery of polypeptides and growth factors. Journal of Cellular Biochemistry, 1991, 45, 340-345.	2.6	67
200	Expression in Escherichia coli, purification and characterization of heparinase I from Flavobacterium heparinum. Biochemical Journal, 1996, 315, 589-597.	3.7	67
201	Nanomaterials for Therapeutic RNA Delivery. Matter, 2020, 3, 1948-1975.	10.0	67
202	BBB pathophysiology–independent delivery of siRNA in traumatic brain injury. Science Advances, 2021, 7, .	10.3	67
203	Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharmaceutical Research, 1993, 10, 391-399.	3.5	66
204	Sustained local anesthetic release from bioerodible polymer matrices: a potential method for prolonged regional anesthesia. Pharmaceutical Research, 1993, 10, 1527-1532.	3.5	66
205	Global microRNA depletion suppresses tumor angiogenesis. Genes and Development, 2014, 28, 1054-1067.	5.9	66
206	One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer Delivery Systems for mRNA. Journal of the American Chemical Society, 2021, 143, 12315-12327.	13.7	66
207	Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nature Biotechnology, 2022, 40, 103-109.	17.5	64
208	Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels. Journal of Applied Physiology, 2000, 89, 961-966.	2.5	62
209	Surface-Initiated Ring-Opening Polymerization ofε-Caprolactone from a Patterned Poly(hydroxymethyl-p-xylylene). Macromolecular Rapid Communications, 2001, 22, 968-971.	3.9	62
210	TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer. Journal of Controlled Release, 2016, 223, 215-223.	9.9	62
211	Polymers for the controlled release of macromolecules: Effect of molecular weight of ethylene-vinyl acetate copolymer. Journal of Biomedical Materials Research Part B, 1985, 19, 445-460.	3.1	61
212	Printing patterns of biospecifically-adsorbed protein. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 319-331.	3.5	61
213	Photo-response behavior of electrospun nanofibers based on spiropyran-cyclodextrin modified polymer. Journal of Materials Chemistry, 2010, 20, 9910.	6.7	61
214	Biomaterials: Status, challenges, and perspectives. AICHE Journal, 2000, 46, 1286-1289.	3.6	60
215	Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomedical Optics Express, 2015, 6, 1146.	2.9	60
216	Controlled protein release from polyethyleneimine-coated poly(L-lactic acid)/pluronic blend matrices. Pharmaceutical Research, 1992, 09, 37-39.	3.5	59

#	Article	IF	CITATIONS
217	Fluid Shear Stress Increases Neutrophil Activation via Platelet-Activating Factor. Biophysical Journal, 2014, 106, 2243-2253.	0.5	59
218	Rapid, Single-Cell Analysis and Discovery of Vectored mRNA Transfection InÂVivo with a loxP-Flanked tdTomato Reporter Mouse. Molecular Therapy - Nucleic Acids, 2018, 10, 55-63.	5.1	59
219	High throughput discovery of new fouling-resistant surfaces. Journal of Materials Chemistry, 2011, 21, 693-704.	6.7	58
220	Leukocytes as carriers for targeted cancer drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 375-392.	5.0	58
221	Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound. Theranostics, 2018, 8, 341-357.	10.0	57
222	Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Delivery and Translational Research, 2020, 10, 661-677.	5.8	57
223	Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells. Nano Letters, 2022, 22, 533-542.	9.1	57
224	Magnetically controlled release systems: Effect of polymer composition. Journal of Biomedical Materials Research Part B, 1985, 19, 935-940.	3.1	56
225	Aptamer photoregulation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17099-17103.	7.1	56
226	Sequenceâ€Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. Angewandte Chemie - International Edition, 2016, 55, 9529-9533.	13.8	56
227	A smart insulin patch. Nature, 2015, 524, 39-40.	27.8	55
228	Pyranose Ring Flexibility. Mapping of Physical Data for Iduronate in Continuous Conformational Space. Journal of the American Chemical Society, 1998, 120, 2099-2107.	13.7	54
229	Sciatic nerve blockade with lipid-protein-sugar particles containing bupivacaine. Pharmaceutical Research, 2000, 17, 1243-1249.	3.5	54
230	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
231	Modeling of polymer erosion in three dimensions: Rotationally symmetric devices. AICHE Journal, 1995, 41, 2292-2299.	3.6	53
232	Lipid Nanoparticle-Mediated Delivery of mRNA Therapeutics and Vaccines. Trends in Molecular Medicine, 2021, 27, 616-617.	6.7	52
233	Rapid temporal control of transdermal drug delivery by electroporation. Pharmaceutical Research, 1994, 11, 1834-1837.	3.5	51
234	Subcellular probes for neurochemical recording from multiple brain sites. Lab on A Chip, 2017, 17, 1104-1115.	6.0	51

#	Article	IF	CITATIONS
235	Temperature-responsive biometamaterials for gastrointestinal applications. Science Translational Medicine, 2019, 11, .	12.4	51
236	A Nanoprimer To Improve the Systemic Delivery of siRNA and mRNA. Nano Letters, 2020, 20, 4264-4269.	9.1	51
237	Transdermal extraction of analytes using low-frequency ultrasound. Pharmaceutical Research, 2000, 17, 466-470.	3.5	50
238	A simple synthetic route to the formation of a block copolymer of poly(lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications. Journal of Biomedical Materials Research Part B, 2001, 58, 291-294.	3.1	50
239	Randomized Controlled Trial of a Dichoptic Digital Therapeutic for Amblyopia. Ophthalmology, 2022, 129, 77-85.	5.2	50
240	Nanomedicines for endothelial disorders. Nano Today, 2015, 10, 759-776.	11.9	49
241	Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). Journal of Controlled Release, 2022, 344, 50-61.	9.9	49
242	Polyanhydride microspheres. IV. Morphology and characterization of systems made by spray drying. Journal of Applied Polymer Science, 1992, 45, 125-134.	2.6	48
243	Mechanical Shear Properties of Cell-Polymer Cartilage Constructs. Tissue Engineering, 1999, 5, 241-250.	4.6	48
244	Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs. Journal of Controlled Release, 2015, 202, 93-100.	9.9	48
245	Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine, 2021, 67, 103354.	6.1	48
246	A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials, 2015, 61, 257-265.	11.4	47
247	Ex Vivo Cytosolic Delivery of Functional Macromolecules to Immune Cells. PLoS ONE, 2015, 10, e0118803.	2.5	47
248	Nanomaterial Interactions with Human Neutrophils. ACS Biomaterials Science and Engineering, 2018, 4, 4255-4265.	5.2	47
249	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(β-amino ester)s. Molecular Therapy, 2007, 15, 1306-12.	8.2	47
250	Proliferation, morphology, and protein expression by osteoblasts cultured on poly(anhydride-co-imides). Journal of Biomedical Materials Research Part B, 1999, 48, 322-327.	3.1	46
251	Sustained release of insulin from insoluble inhaled particles. Drug Development Research, 1999, 48, 178-185.	2.9	46
252	Ultrasound-Mediated Delivery of RNA to Colonic Mucosa of LiveÂMice. Gastroenterology, 2017, 152, 1151-1160.	1.3	46

#	Article	IF	CITATIONS
253	Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 9926-9937.	13.7	46
254	Development and characterization of microencapsulated microspheres. Pharmaceutical Research, 1994, 11, 1568-1574.	3.5	45
255	Formulation and Delivery of Proteins and Peptides. ACS Symposium Series, 1994, , 1-19.	0.5	45
256	The different behaviors of skeletal muscle cells and chondrocytes on PEGT/PBT block copolymers are related to the surface properties of the substrate. Journal of Biomedical Materials Research Part B, 2001, 54, 47-58.	3.1	45
257	Using Large Datasets to Understand Nanotechnology. Advanced Materials, 2019, 31, e1902798.	21.0	45
258	Enzymatically activated microencapsulated liposomes can provide pulsatile drug release. FASEB Journal, 1990, 4, 2533-2539.	0.5	44
259	An approach for the stable immobilization of proteins. Biotechnology and Bioengineering, 1991, 37, 227-237.	3.3	44
260	In vitro bone biocompatibility of poly(anhydride-co-imides) containing pyromellitylimidoalanine. Journal of Orthopaedic Research, 1996, 14, 445-454.	2.3	44
261	Hydrolytic degradation of ionically cross-linked polyphosphazene microspheres. Journal of Applied Polymer Science, 1994, 53, 1573-1578.	2.6	43
262	Degradation, Structure and Properties of Fibrous Nonwoven Poly(Glycolic Acid) Scaffolds for Tissue Engineering. Materials Research Society Symposia Proceedings, 1995, 394, 99.	0.1	42
263	Synthesis and characterization of novel degradable photocrosslinked poly(ether-anhydride) networks. Journal of Polymer Science Part A, 2000, 38, 1277-1282.	2.3	41
264	Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow. Biomaterials, 2015, 56, 179-186.	11.4	41
265	Oral delivery of biologics using drug-device combinations. Current Opinion in Pharmacology, 2017, 36, 8-13.	3.5	41
266	An immobilized enzyme reactor for the detoxification of bilirubin. Biotechnology and Bioengineering, 1986, 28, 1531-1539.	3.3	40
267	Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction. ACS Nano, 2016, 10, 7267-7278.	14.6	40
268	Genotype-targeted local therapy of glioma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8388-E8394.	7.1	40
269	Molecular weight changes in polymer erosion. Pharmaceutical Research, 1992, 09, 1279-1283.	3.5	39
270	Cytotoxicity testing of poly(anhydride-co-imides) for orthopedic applications. Journal of Biomedical Materials Research Part B, 1995, 29, 1233-1240.	3.1	38

#	Article	IF	CITATIONS
271	Microstructures of poly (ethylene glycol) by molding and dewetting. Applied Physics Letters, 2003, 83, 1668-1670.	3.3	38
272	Process simulation for recombinant protein production: Cost estimation and sensitivity analysis for heparinase I expressed inEscherichia coli. , 1997, 53, 575-582.		37
273	A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma. Biomaterials, 2016, 93, 71-82.	11.4	35
274	Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nature Communications, 2017, 8, 747.	12.8	35
275	Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. Journal of Controlled Release, 2018, 290, 75-87.	9.9	35
276	Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Science Advances, 2020, 6, eaaz0127.	10.3	35
277	Robotically handled whole-tissue culture system for the screening of oral drug formulations. Nature Biomedical Engineering, 2020, 4, 544-559.	22.5	35
278	Engineered drug delivery devices to address Global Health challenges. Journal of Controlled Release, 2021, 331, 503-514.	9.9	35
279	Nanotechnology for InÂvivo Targeted siRNA Delivery. Advances in Genetics, 2014, 88, 37-69.	1.8	34
280	Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Advanced Drug Delivery Reviews, 2020, 160, 244-261.	13.7	34
281	The formation of propylene fumarate oligomers for use in bioerodible bone cement composites. Journal of Polymer Science Part A, 1990, 28, 973-985.	2.3	33
282	Heparinase I fromFlavobacterium heparinum. Identification of a Critical Histidine Residue Essential for Catalysis As Probed by Chemical Modification and Site-Directed Mutagenesisâ€. Biochemistry, 1996, 35, 6846-6852.	2.5	33
283	Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polymers for Advanced Technologies, 2011, 22, 502-511.	3.2	33
284	Simple battery armor to protect against gastrointestinal injury from accidental ingestion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16490-16495.	7.1	33
285	Multiâ€Material Tissue Engineering Scaffold with Hierarchical Pore Architecture. Advanced Functional Materials, 2016, 26, 5873-5883.	14.9	33
286	Polyphosphazene immunoadjuvants: Historical perspective and recent advances. Journal of Controlled Release, 2021, 329, 299-315.	9.9	33
287	Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. Journal of Controlled Release, 2022, 347, 521-532.	9.9	33
288	Retention of Micronutrients by Polymer Coatings Used to Fortify Rice. Journal of Food Science, 1982, 47, 260-262.	3.1	32

#	Article	IF	CITATIONS
289	A Novel Synthetic Method for Hybridoma Cell Encapsulation. Nature Biotechnology, 1991, 9, 468-471.	17.5	32
290	Shear-Induced Resistance to Neutrophil Activation via the Formyl Peptide Receptor. Biophysical Journal, 2012, 102, 1804-1814.	0.5	32
291	Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA. Cell Reports, 2017, 20, 1950-1963.	6.4	32
292	Microgel encapsulated nanoparticles for glucose-responsive insulin delivery. Biomaterials, 2021, 267, 120458.	11.4	32
293	Novel desiccants based on designed polymeric blends. Journal of Applied Polymer Science, 2001, 80, 317-327.	2.6	31
294	Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications. Acta Biomaterialia, 2014, 10, 2563-2573.	8.3	30
295	Stability of photocurable anhydrides: Methacrylic acid mixed anhydrides of nontoxic diacids. Journal of Polymer Science Part A, 2001, 39, 4189-4195.	2.3	29
296	Nanostructured Surfaces to Target and Kill Circulating Tumor Cells While Repelling Leukocytes. Journal of Nanomaterials, 2012, 2012, 1-10.	2.7	29
297	A therapeutic convection–enhanced macroencapsulation device for enhancing β cell viability and insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
298	Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. Journal of Controlled Release, 2022, 341, 616-633.	9.9	29
299	Principles of Tissue Engineering and Reconstruction Using Polymer-Cell Constructs. Materials Research Society Symposia Proceedings, 1991, 252, 345.	0.1	28
300	Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Advanced Drug Delivery Reviews, 2021, 178, 113990.	13.7	28
301	Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter. Biomedical Optics Express, 2016, 7, 2927.	2.9	27
302	A Janus Mucoadhesive and Omniphobic Device for Gastrointestinal Retention. Advanced Healthcare Materials, 2016, 5, 1141-1146.	7.6	27
303	Immobilized surfactant-nanotube complexes support selectin-mediated capture of viable circulating tumor cells in the absence of capture antibodies. Journal of Biomedical Materials Research - Part A, 2015, 103, 3407-3418.	4.0	26
304	Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers. Biomacromolecules, 2016, 17, 2830-2838.	5.4	26
305	Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis. Nature Communications, 2017, 8, 14179.	12.8	26
306	Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16071-16076.	7.1	25

#	Article	IF	CITATIONS
307	Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioengineering, 2021, 5, 011501.	6.2	25
308	Immobilized enzyme cellulose hollow fibers: I. Immobilization of heparinase. Biotechnology and Bioengineering, 1989, 34, 1366-1373.	3.3	24
309	Controlled release of a therapeutic protein. Nature Medicine, 1996, 2, 742-743.	30.7	24
310	Photopolymerization of Novel Degradable Networks for Orthopedic Applications. ACS Symposium Series, 1997, , 189-202.	0.5	24
311	A Sizeâ€Selective Intracellular Delivery Platform. Small, 2016, 12, 5873-5881.	10.0	24
312	Delivery technologies for in utero gene therapy. Advanced Drug Delivery Reviews, 2021, 169, 51-62.	13.7	24
313	Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nature Biomedical Engineering, 2022, 6, 476-494.	22.5	24
314	Controlled release of proteins from poly(L-lactic acid) coated polyisobutylcyanoacrylate microcapsules. Journal of Applied Polymer Science, 1994, 52, 1797-1807.	2.6	23
315	Past, Present, and Future Drug Delivery Systems for Antiretrovirals. Journal of Pharmaceutical Sciences, 2016, 105, 3471-3482.	3.3	23
316	Rational design of antiâ€inflammatory lipid nanoparticles for mRNA delivery. Journal of Biomedical Materials Research - Part A, 2022, 110, 1101-1108.	4.0	23
317	Sequenceâ€Đefined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. Angewandte Chemie, 2016, 128, 9681-9685.	2.0	22
318	Methods for <i>in Vivo</i> Tissue Electroporation Using Surface Electrodes. Drug Delivery, 1993, 1, 125-131.	5.7	21
319	Covalent Incorporation of Trehalose within Hydrogels for Enhanced Longâ€Term Functional Stability and Controlled Release of Biomacromolecules. Advanced Healthcare Materials, 2015, 4, 1802-1812.	7.6	21
320	Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on threeâ€dimensionally woven scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1453-1465.	2.7	21
321	Delivery technologies to engineer natural killer cells for cancer immunotherapy. Cancer Gene Therapy, 2021, 28, 947-959.	4.6	20
322	Selective differentiation of mammalian bone marrow stromal cells cultured on threeâ€dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	20
323	Development of oil-based gels as versatile drug delivery systems for pediatric applications. Science Advances, 2022, 8, .	10.3	19
324	Of microneedles and ultrasound: Physical modes of gastrointestinal macromolecule delivery. Tissue Barriers, 2016, 4, e1150235.	3.2	18

#	Article	IF	CITATIONS
325	Induction of Hepatocyte Differentiation by the Extracellular Matrix and an RGD-Containing Synthetic Peptide. Materials Research Society Symposia Proceedings, 1991, 252, 199.	0.1	17
326	Biomaterials and biotechnology: From the discovery of the first angiogenesis inhibitors to the development of controlled drug delivery systems and the foundation of tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2449-2455.	4.0	17
327	Matrilin-1 Is an Inhibitor of Neovascularization. Journal of Biological Chemistry, 2014, 289, 14301-14309.	3.4	17
328	Poly(Limonene Thioether) Scaffold for Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 813-821.	7.6	17
329	The influence of bond chemistry on immobilized enzyme systems forex vivo use. Biotechnology and Bioengineering, 1988, 32, 554-563.	3.3	16
330	Poly(ß-amino ester)s for DNA delivery. Israel Journal of Chemistry, 2005, 45, 477-485.	2.3	16
331	Ionizable Lipid Nanoparticle-Mediated Delivery of Plasmid DNA in Cardiomyocytes. International Journal of Nanomedicine, 0, Volume 17, 2865-2881.	6.7	16
332	Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles. Science Advances, 2022, 8, .	10.3	16
333	Mechanical deformation of polymer matrix controlled release devices modulates drug release. Journal of Biomedical Materials Research Part B, 1992, 26, 1619-1631.	3.1	15
334	Drug Delivery from Bioerodible Polymers. ACS Symposium Series, 1994, , 242-277.	0.5	15
335	Stem Cell Enrichment with Selectin Receptors: Mimicking the pH Environment of Trauma. Sensors, 2013, 13, 12516-12526.	3.8	15
336	Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Advanced Drug Delivery Reviews, 2020, 156, 65-79.	13.7	15
337	Characterization and development of RGDâ€peptideâ€modified poly(lactic acidâ€coâ€lysine) as an interactive, resorbable biomaterial. Journal of Biomedical Materials Research Part B, 1997, 35, 513-523.	3.1	15
338	Logical Analysis of Data in Structureâ€Activity Investigation of Polymeric Gene Delivery. Macromolecular Theory and Simulations, 2011, 20, 275-285.	1.4	14
339	Splenic progenitors aid in maintaining high neutrophil numbers at sites of sterile chronic inflammation. Journal of Leukocyte Biology, 2016, 100, 253-260.	3.3	14
340	InÂVivo RNAi-Mediated elF3m Knockdown Affects Ribosome Biogenesis and Transcription but Has Limited Impact on mRNA-Specific Translation. Molecular Therapy - Nucleic Acids, 2020, 19, 252-266.	5.1	14
341	Engineered insulin-polycation complexes for glucose-responsive delivery with high insulin loading. Journal of Controlled Release, 2021, 338, 71-79.	9.9	14
342	Morphologically Well-defined Gold Nanoparticles Embedded in Thermo-Responsive Hydrogel Matrices. Materials Research Society Symposia Proceedings, 2004, 820, 270.	0.1	13

#	Article	IF	CITATIONS
343	Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging. Bioconjugate Chemistry, 2017, 28, 1413-1421.	3.6	13
344	A Nanoparticle Platform for Accelerated In Vivo Oral Delivery Screening of Nucleic Acids. Advanced Therapeutics, 2021, 4, .	3.2	13
345	Oral Treatment for Jaundice Using Immobilized Bilirubin Oxidase. Artificial Organs, 1992, 16, 331-335.	1.9	12
346	Defining optimal permeant characteristics for ultrasound-mediated gastrointestinal delivery. Journal of Controlled Release, 2017, 268, 113-119.	9.9	12
347	Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: Yong investigator perspective. Journal of Colloid and Interface Science, 2019, 538, 45-50.	9.4	12
348	Morphology and mechanical function of long-term in vitro engineered cartilage. Journal of Biomedical Materials Research Part B, 1999, 44, 217.	3.1	12
349	Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8+ T Cell Responses with Antitumor Activity. Journal of Immunology, 2022, 208, 929-940.	0.8	11
350	Unnatural killer cells to prevent bloodborne metastasis: inspiration from biology and engineering. Expert Review of Anticancer Therapy, 2014, 14, 641-644.	2.4	10
351	Engineering precision. Science Translational Medicine, 2015, 7, 289ed6.	12.4	10
352	Making the case: developing innovative adherence solutions for the treatment of tuberculosis. BMJ Global Health, 2019, 4, e001323.	4.7	10
353	A New Natural Defense Against Airborne Pathogens. QRB Discovery, 2020, 1, e5.	1.6	10
354	Effect of Extracorporeal Enzymatic Deheparinization on Formed Blood Components. Artificial Organs, 1984, 8, 198-203.	1.9	9
355	Kinetics of bilirubin oxidase and modeling of an immobilized bilirubin oxidase reactor for bilirubin detoxification. Biotechnology and Bioengineering, 1988, 31, 536-546.	3.3	9
356	Immobilized enzyme cellulose hollow fibers: II. Kinetic analysis. Biotechnology and Bioengineering, 1989, 34, 1374-1382.	3.3	9
357	Immobilized enzyme cellulose hollow fibers: III. Physical properties andin vitro biocompatibility. Biotechnology and Bioengineering, 1989, 34, 1383-1390.	3.3	9
358	Sustained release of acetylcholine in rat hippocampus using a polyanhydride drug-delivery system. Polymers for Advanced Technologies, 1992, 3, 331-335.	3.2	9
359	Polymer matrix controlled release systems: Influence of polymer carrier and temperature on water uptake and protein release. Journal of Applied Polymer Science, 1992, 46, 19-26.	2.6	9
360	Aspects of Polymer Erosion. Materials Research Society Symposia Proceedings, 1995, 394, 155.	0.1	9

#	Article	IF	CITATIONS
361	Poly(glycerol sebacate)—A Novel Biodegradable Elastomer for Tissue Engineering. Materials Research Society Symposia Proceedings, 2002, 724, N11.1.1.	0.1	9
362	A microfluidic device to select for cells based on chemotactic phenotype. Technology, 2014, 02, 101-105.	1.4	9
363	RNAi-nanoparticulate manipulation of gene expression as a new functional genomics tool in the liver. Journal of Hepatology, 2016, 64, 899-907.	3.7	9
364	Caffeine-catalyzed gels. Biomaterials, 2018, 170, 127-135.	11.4	9
365	βâ€Aminoacrylate Synthetic Hydrogels: Easily Accessible and Operationally Simple Biomaterials Networks. Angewandte Chemie, 2018, 130, 16258-16261.	2.0	9
366	Nasal Calcium-Rich Salts for Cleaning Airborne Particles from the Airways of Essential Workers, Students, and a Family in Quarantine. Molecular Frontiers Journal, 2020, 04, 36-45.	1.1	9
367	Endothelial plasticity drives aberrant vascularization and impedes cardiac repair after myocardial infarction. , 2022, 1, 372-388.		9
368	Design of a biomedical reactor for plasma low-density lipoprotein removal. Biotechnology and Bioengineering, 1993, 42, 1252-1262.	3.3	8
369	Purification and characterization of two collagenase inhibitors from mouse sarcoma 180 conditioned medium. Journal of Cellular Biochemistry, 1994, 56, 97-105.	2.6	8
370	Engineering synthetically modified insulin for glucose-responsive diabetes therapy. Expert Review of Endocrinology and Metabolism, 2015, 10, 483-489.	2.4	8
371	Convergence for Translation: Drugâ€Delivery Research in Multidisciplinary Teams. Angewandte Chemie - International Edition, 2018, 57, 4156-4163.	13.8	8
372	A crosslinked polymer skin barrier film for moderate to severe atopic dermatitis: A pilot study in adults. Journal of the American Academy of Dermatology, 2020, 82, 895-901.	1.2	7
373	Carbodiimide modification enhances activity of pig pancreatic phospholipase A2. FEBS Journal, 1994, 223, 611-616.	0.2	6
374	Implantable hollow fiber bioreactor as a potential treatment for hypercholesterolemia: Characterization of the catalytic unit. Biotechnology and Bioengineering, 1995, 48, 36-41.	3.3	6
375	Novel liposome-based formulations for prolonged delivery of proteins and vaccines. Journal of Liposome Research, 1995, 5, 813-827.	3.3	6
376	Seeing through the interface: poly(<i>ε</i> -Caprolactone) surface modification of poly(glycerol-co-sebacic acid) membranes in adult porcine retinal explants. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2349-2358.	2.7	6
377	Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. Frontiers in Neurology, 2019, 10, 252.	2.4	6
378	Cytosolic Delivery of Small Protein Scaffolds Enables Efficient Inhibition of Ras and Myc. Molecular Pharmaceutics, 2022, 19, 1104-1116.	4.6	6

#	Article	IF	CITATIONS
379	Poly(L-Lactic Acid- <i>Co</i> -Aspartic Acid): Interactive Polymers for Tissue Engineering. Materials Research Society Symposia Proceedings, 1995, 394, 77.	0.1	5
380	Tissue Electroporation for Localized Drug Delivery. Advances in Chemistry Series, 1995, , 301-316.	0.6	5
381	RNA therapeutics – The potential treatment for myocardial infarction. Regenerative Therapy, 2016, 4, 83-91.	3.0	5
382	Gene Delivery: Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium (Adv. Mater. 8/2019). Advanced Materials, 2019, 31, 1970053.	21.0	5
383	Computationally Guided Intracerebral Drug Delivery via Chronically Implanted Microdevices. Cell Reports, 2020, 31, 107734.	6.4	5
384	The Erosion Properties of Polyanhydrides. Materials Research Society Symposia Proceedings, 1993, 331, 85.	0.1	4
385	Computer Simulation of Low-Density Lipoprotein Removal in the Presence of a Bioreactor Containing Phospholipase A2. Biotechnology Progress, 1995, 11, 133-139.	2.6	4
386	Nanoparticle-Aptamer Bioconjugates for Targeted Antineoplastic Drug Delivery. American Journal of Drug Delivery, 2006, 4, 123-130.	0.6	4
387	Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnology and Bioengineering, 2000, 67, 217.	3.3	4
388	Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. Journal of Biomedical Materials Research Part B, 1998, 42, 417-424.	3.1	4
389	Large Scale Purification of Heparinase. Biotechnology Progress, 1987, 3, 27-30.	2.6	3
390	Real Time Response Polymeric Delivery Systems. Annals of the New York Academy of Sciences, 1991, 618, 330-334.	3.8	3
391	Biodegradable Cell Transplantation Devices for Tissue Regeneration. Materials Research Society Symposia Proceedings, 1991, 252, 353.	0.1	3
392	Pulsatile Release from Microencapsulated Liposomes. Journal of Liposome Research, 1994, 4, 349-360.	3.3	3
393	Cell-killing potential of a water-soluble radical initiator. International Journal of Cancer, 2001, 93, 875-879.	5.1	3
394	Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format. Nano Letters, 2018, 18, 618-628.	9.1	3
395	Computer Based Visualization for Quantitative and Qualitative Analysis of the Distribution of Matrix-Bound Proteins. Nature Biotechnology, 1988, 6, 927-929.	17.5	2

Human Embryonic Stem Cell Culture for Tissue Engineering. , 2006, , 61-82.

#	Article	IF	CITATIONS
397	Translation durch Konvergenz: Drugâ€Đeliveryâ€Forschung in multidisziplinäen Teams. Angewandte Chemie, 2018, 130, 4226-4234.	2.0	2
398	Can Fish and Cell Phones Teach Us about Our Health?. ACS Sensors, 2019, 4, 2566-2570.	7.8	2
399	Lighting the way to personalized mRNA immune cell therapies. Science Advances, 2022, 8, eabo2423.	10.3	2
400	Lipid nanodiscs give cancer a STING. Nature Materials, 2022, 21, 616-617.	27.5	2
401	Degradation of Poly(Anhydride-Co-Imides): Novel Polymers for Orthopedic Applications. Materials Research Society Symposia Proceedings, 1995, 394, 41.	0.1	1
402	Cogelation of Hydrolyzable Cross-Linkers and Poly(ethylene oxide) Dimethacrylate and Their Use as Controlled Release Vehicles. ACS Symposium Series, 1999, , 1-13.	0.5	1
403	Bioerodible Polypyrrole. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	1
404	Unnatural killer cells: TRAIL-coated leukocytes that kill cancer cells in the circulation. , 2014, , .		1
405	Conducting Polymers: Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1310-1310.	21.0	1
406	Differentially charged nanomaterials control selectin-mediated adhesion and isolation of cancer cells and leukocytes under flow. , 2014, , .		1
407	The Engineering of Biology and Medicine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14423-14423.	7.1	1
408	A novel biotinylated degradable polymer for cellâ€interactive applications. Biotechnology and Bioengineering, 1998, 58, 529-535.	3.3	1
409	Measuring the pH environment of DNA delivered using nonviral vectors: Implications for lysosomal trafficking. Biotechnology and Bioengineering, 2002, 78, 503-508.	3.3	1
410	Bioengineering: Its Role in the Changing Face of Chemical Engineering. Biotechnology Progress, 1987, 3, j3-j3.	2.6	0
411	Part C: Directed Differentiation of Human Embryonic Stem Cells into Osteoblasts Cells. , 0, , 249-271.		0
412	Microfabrication of Asymmetric, Homogeneous Cell-laden Hydrogel Microcapsules. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	0
413	Shear-induced resistance to neutrophil activation via the formyl peptide receptor. , 2011, , .		0
414	Tissue Engineering: Controlling Spatial Organization of Multiple Cell Types in Defined 3D Geometries (Adv. Mater. 41/2012). Advanced Materials, 2012, 24, 5542-5542.	21.0	0

0

#	Article	IF	CITATIONS
415	Scaffolds: 3D Structural Patterns in Scalable, Elastomeric Scaffolds Guide Engineered Tissue Architecture (Adv. Mater. 32/2013). Advanced Materials, 2013, 25, 4378-4378.	21.0	ο

416 TOWARD GLOBAL ERADICATION OF INFECTIOUS DISEASE. , 2016, , .