

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4131890/publications.pdf Version: 2024-02-01

IF ARTICLE CITATIONS Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science 454 Bulletin, 2017, 62, 1074-1080. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for 9.1 410 High-Performance Flexible Transparent Electrodes. Nano Letters, 2015, 15, 4206-4213. Synthesis challenges for graphene industry. Nature Materials, 2019, 18, 520-524. 27.5 389 Two-Dimensional (C₄9</sub>NH₃)₂PbBr₄ Perovskite Crystals for High-Performance Photodetector. Journal of the American Chemical Society, 13.7 341 2016, 138, 16612-16615. Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021,. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. 47.7 260 Chemical Reviews, 2018, 118, 9281-9343. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. 12.6 Science, 2018, 361, 387-392. State of Doped Phosphorus and Its Influence on the Physicochemical and Photocatalytic Properties of 3.1141 P-doped Titania. Journal of Physical Chemistry C, 2008, 112, 15502-15509. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. 12.8 136 Nature Cómmunications, 2016, 7, 10699. Towards super-clean graphene. Nature Communications, 2019, 10, 1912. 12.8 133 Surface Monocrystallization of Copper Foil for Fast Growth of Large Singleâ€Crystal Graphene under 21.0 128 Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974. Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187. 27.5 102 Controlled Growth of Singleâ€Crystal Graphene Films. Advanced Materials, 2020, 32, e1903266. 21.0 95 Lowâ€Temperature Heteroepitaxy of 2D Pbl₂/Graphene for Largeâ€Area Flexible 21.0 93 Photodetectors. Advanced Materials, 2018, 30, e1803194. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nature Communications, 2021, 12, 2391. 12.8

Fast Growth and Broad Applications of 25â€Inch Uniform Graphene Glass. Advanced Materials, 2017, 29, 16 21.0 90 1603428.

17	Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano, 2016, 10, 2922-2929.	14.6	89
18	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity.	21.0	86

Advanced Materials, 2018, 30, e1706076.

#

9

4

6

8

10

12

14

#	Article	IF	CITATIONS
19	Grapheneâ€Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithiumâ€lon Battery. Advanced Materials, 2017, 29, 1703882.	21.0	85
20	Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells. Advanced Materials, 2017, 29, 1700639.	21.0	80
21	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	10.3	77
22	Composite super-moiré lattices in double-aligned graphene heterostructures. Science Advances, 2019, 5, eaay8897.	10.3	74
23	Rapid Growth of Large Singleâ€Crystalline Graphene via Second Passivation and Multistage Carbon Supply. Advanced Materials, 2016, 28, 4671-4677.	21.0	69
24	Graphene Transfer: Paving the Road for Applications of Chemical Vapor Deposition Graphene. Small, 2021, 17, e2007600.	10.0	68
25	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 14446-14451.	13.8	64
26	Uniformly Carbon-Covered Alumina and Its Surface Characteristics. Langmuir, 2005, 21, 5040-5046.	3.5	62
27	Plasmon-Enhanced Photothermoelectric Conversion in Chemical Vapor Deposited Graphene p–n Junctions. Journal of the American Chemical Society, 2013, 135, 10926-10929.	13.7	61
28	Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. Journal of the American Chemical Society, 2015, 137, 12006-12012.	13.7	61
29	Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures. Laser and Photonics Reviews, 2017, 11, 1600148.	8.7	61
30	Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity. ACS Nano, 2016, 10, 6725-6730.	14.6	53
31	Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy. Bioconjugate Chemistry, 2017, 28, 2410-2419.	3.6	47
32	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	13.7	47
33	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	14.6	46
34	Building graphene p–n junctions for next-generation photodetection. Nano Today, 2015, 10, 701-716.	11.9	45
35	Large Singleâ€Crystal Cu Foils with Highâ€Index Facets by Strainâ€Engineered Anomalous Grain Growth. Advanced Materials, 2020, 32, e2002034.	21.0	45
36	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	10.3	43

#	Article	IF	CITATIONS
37	New Growth Frontier: Superclean Graphene. ACS Nano, 2020, 14, 10796-10803.	14.6	41
38	A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.	21.0	40
39	Toward Epitaxial Growth of Misorientation-Free Graphene on Cu(111) Foils. ACS Nano, 2022, 16, 285-294.	14.6	40
40	Lowâ€Temperature and Rapid Growth of Large Singleâ€Crystalline Graphene with Ethane. Small, 2018, 14, 1702916.	10.0	39
41	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	10.3	35
42	Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters, 2016, 16, 4094-4101.	9.1	34
43	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Research, 2016, 9, 3048-3055.	10.4	32
44	Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Research, 2017, 10, 355-363.	10.4	30
45	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ PbI ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	13.7	29
46	Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors. Applied Physics Letters, 2010, 97, .	3.3	28
47	On-the-spot growth. Nature Materials, 2016, 15, 9-10.	27.5	28
48	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2020, 59, 17214-17218.	13.8	28
49	Intrinsic Wettability in Pristine Graphene. Advanced Materials, 2022, 34, e2103620.	21.0	28
50	Formation of Ag Nanoparticle-Doped Foam-like Polymer Films at the Liquid–Liquid Interface. Journal of Physical Chemistry B, 2011, 115, 11113-11118.	2.6	25
51	Cerasomal Lovastatin Nanohybrids for Efficient Inhibition of Triple-Negative Breast Cancer Stem Cells To Improve Therapeutic Efficacy. ACS Applied Materials & Interfaces, 2018, 10, 7022-7030.	8.0	23
52	Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance Transparent Electrodes. Advanced Materials, 2017, 29, 1703424.	21.0	21
53	Doping of Graphene Films: Open the way to Applications in Electronics and Optoelectronics. Advanced Functional Materials, 2022, 32, .	14.9	21
54	Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews, 2021, 8, .	11.3	19

#	Article	IF	CITATIONS
55	One‣tep Growth of Graphene/Carbon Nanotube Hybrid Films on Sodaâ€Lime Glass for Transparent Conducting Applications. Advanced Electronic Materials, 2017, 3, 1700212.	5.1	17
56	Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals. ACS Nano, 2016, 10, 10317-10323.	14.6	16
57	Anisotropy in Shape and Ligandâ€Conjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio–Nano Interaction and Its Outcome. Advanced Functional Materials, 2017, 27, 1700406.	14.9	16
58	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12, 1888-1893.	10.4	16
59	Transferâ€Enabled Fabrication of Graphene Wrinkle Arrays for Epitaxial Growth of AlN Films. Advanced Materials, 2022, 34, e2105851.	21.0	15
60	Adsorption and porosity properties of carbon-covered alumina surfaces. Journal of Thermal Analysis and Calorimetry, 2007, 88, 601-606.	3.6	13
61	Rapid growth of angle-confined large-domain graphene bicrystals. Nano Research, 2017, 10, 1189-1199.	10.4	9
62	CVD Synthesis of Graphene. , 2017, , 19-56.		9
63	2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes. Advanced Materials, 2015, 27, 4315-4321.	21.0	8
64	Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. National Science Review, 2022, 9, .	9.5	8
65	Hydrophilic, Clean Graphene for Cell Culture and Cryo-EM Imaging. Nano Letters, 2021, 21, 9587-9593.	9.1	7
66	Slipâ€Lineâ€Guided Growth of Graphene. Advanced Materials, 2022, 34, e2201188.	21.0	7
67	Epitaxial Growth of Asymmetricallyâ€Doped Bilayer Graphene for Photocurrent Generation. Small, 2014, 10, 2245-2250.	10.0	6
68	Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach. Nano Research, 2022, 15, 9683-9688.	10.4	6
69	Effect of Pore Size Distribution of Carbon-Covered Alumina on the Preparation of Submicrometer ?-Alumina Powders. Journal of the American Ceramic Society, 2007, 90, 402-406.	3.8	5
70	Effect of carbon content on photocatalytic activity of C/TiO2 composite. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 64-69.	0.4	5
71	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, 14588-14593.	2.0	5
72	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	21.0	5

#	Article	IF	CITATIONS
73	Flexible Photodetectors: Lowâ€Temperature Heteroepitaxy of 2D PbI ₂ /Graphene for Largeâ€Area Flexible Photodetectors (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870271.	21.0	4
74	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie, 2020, 132, 17367-17371.	2.0	4
75	Realization and transport investigation of a single layer-twisted bilayer graphene junction. Carbon, 2020, 163, 105-112.	10.3	4
76	Novel Pd/TiO2-Al2O3 Catalysts for Methane Total Oxidation at Low Temperature and Their18O-Isotope Exchange Behavior. Chinese Journal of Chemistry, 2005, 23, 1333-1338.	4.9	3
77	Efficient Preparation of Submicrometer alpha-Alumina Powders by Calcining Carbon-Covered Alumina. Journal of the American Ceramic Society, 2006, 89, 060623005134006-???.	3.8	3
78	An intermediate-band-assisted avalanche multiplication in InAs/InGaAs quantum dots-in-well infrared photodetector. Applied Physics Letters, 2011, 98, 073504.	3.3	3
79	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	2.5	3
80	Transport signatures of relativistic quantum scars in a graphene cavity. Physical Review B, 2020, 101, .	3.2	3
81	The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Research, 2022, 15, 3775-3780.	10.4	3
82	Probe of local impurity states by bend resistance measurements in graphene cross junctions. Nanotechnology, 2016, 27, 245204.	2.6	2
83	Single Crystals: Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells (Adv. Mater. 26/2017). Advanced Materials, 2017, 29, .	21.0	2
84	Frontispiece: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, .	13.8	2
85	Coulomb-dominated oscillations in a graphene quantum Hall Fabry–Pérot interferometer. Chinese Physics B, 2019, 28, 127203.	1.4	2
86	Graphene Acoustic Phononâ€Mediated Pseudoâ€Landau Levels Tailoring Probed by Scanning Tunneling Spectroscopy. Small, 2020, 16, 1905202.	10.0	2
87	Radiant-energy detection by?Ba?Cu?O thin films. Journal of Infrared, Millimeter and Terahertz Waves, 1989, 10, 445-456.	0.6	1
88	Studies of synthesizing behaviors and superconductivity of sol-gel YBa2Cu3O7â^'x samples in flowing oxygen atmosphere. Frontiers of Physics in China, 2008, 3, 55-60.	1.0	1
89	Shape Anisotropy: Anisotropy in Shape and Ligand onjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio–Nano Interaction and Its Outcome (Adv. Funct. Mater. 31/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
90	Low-field magnetotransport in graphene cavity devices. Nanotechnology, 2018, 29, 205707.	2.6	1

#	Article	IF	CITATIONS
91	PREPARATION OF SUPERCONDUCTING Bi–Pb–Sr–Ca–Cu–O FILMS BY DC MAGNETRON SPUTTERING METHOD. Modern Physics Letters B, 1990, 04, 847-853.	1.9	0
92	Frontispiz: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, .	2.0	0