
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4131142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy in metabolism and quality control: opposing, complementary or interlinked functions?. Autophagy, 2022, 18, 283-292.	4.3	32
2	Non-autophagy Role of Atg5 and NBR1 in Unconventional Secretion of IL-12 Prevents Gut Dysbiosis and Inflammation. Journal of Crohn's and Colitis, 2022, 16, 259-274.	0.6	10
3	A guide to membrane atg8ylation and autophagy with reflections on immunity. Journal of Cell Biology, 2022, 221, .	2.3	28
4	Autophagy in inflammation, infection, and immunometabolism. Immunity, 2021, 54, 437-453.	6.6	333
5	Not lowering the bar, just providing a step stool. Autophagy, 2021, 17, 1569-1570.	4.3	1
6	ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nature Cell Biology, 2021, 23, 846-858.	4.6	43
7	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
8	Atg8ylation as a general membrane stress and remodeling response. Cell Stress, 2021, 5, 128-142.	1.4	29
9	Rapamycin modulates pulmonary pathology in a murine model of <i>Mycobacterium tuberculosis</i> infection. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	7
10	Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell, 2021, 184, 5950-5969.e22.	13.5	54
11	Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy, 2020, 16, 1668-1682.	4.3	34
12	Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal. Developmental Cell, 2020, 52, 69-87.e8.	3.1	198
13	Mammalian Atg8-family proteins are upstream regulators of the lysosomalsystem by controlling MTOR and TFEB. Autophagy, 2020, 16, 2305-2306.	4.3	11
14	Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nature Cell Biology, 2020, 22, 973-985.	4.6	55
15	MERIT, a cellular system coordinating lysosomal repair, removal and replacement. Autophagy, 2020, 16, 1539-1541.	4.3	19
16	Optical induction of autophagy via Transcription factor EB (TFEB) reduces pathological tau in neurons. PLoS ONE, 2020, 15, e0230026.	1.1	16
17	AMPK is activated during lysosomal damage via a galectin-ubiquitin signal transduction system. Autophagy, 2020, 16, 1550-1552.	4.3	26
18	AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System. Molecular Cell, 2020, 77, 951-969.e9.	4.5	103

#	Article	IF	CITATIONS
19	Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy, 2019, 15, 169-171.	4.3	112
20	TRIM32 acts both as a substrate and a positive regulator of p62/SQSTM1 impaired in a muscular dystrophy disease. Journal of Cell Science, 2019, 132, .	1.2	14
21	Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through <scp>SNARE</scp> s. EMBO Journal, 2019, 38, e101994.	3.5	37
22	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	4.3	0
23	Enhancement of lung levels of antibiotics by ambroxol and bromhexine. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 213-218.	1.5	10
24	Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Developmental Cell, 2019, 49, 130-144.e6.	3.1	99
25	Autophagosome Formation: Cutting the Gordian Knot at the ER. Current Biology, 2018, 28, R347-R349.	1.8	17
26	Galectins Control mTOR in Response to Endomembrane Damage. Molecular Cell, 2018, 70, 120-135.e8.	4.5	191
27	Role of autophagy in IL-1Î ² export and release from cells. Seminars in Cell and Developmental Biology, 2018, 83, 36-41.	2.3	55
28	Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. Journal of Cell Biology, 2018, 217, 997-1013.	2.3	115
29	Autophagy and inflammation: A special review issue. Autophagy, 2018, 14, 179-180.	4.3	72
30	Autophagy balances inflammation in innate immunity. Autophagy, 2018, 14, 243-251.	4.3	393
31	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	4.3	3
32	Ambroxol Induces Autophagy and Potentiates Rifampin Antimycobacterial Activity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	32
33	TRIM-directed selective autophagy regulates immune activation. Autophagy, 2017, 13, 989-990.	4.3	86
34	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
35	Cellular and molecular mechanism for secretory autophagy. Autophagy, 2017, 13, 1084-1085.	4.3	71
36	Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy, 2017, 13, 1086-1087.	4.3	40

#	Article	IF	CITATIONS
37	Dedicated <scp>SNARE</scp> s and specialized <scp>TRIM</scp> cargo receptors mediate secretory autophagy. EMBO Journal, 2017, 36, 42-60.	3.5	247
38	Autophagy's secret life: secretion instead of degradation. Essays in Biochemistry, 2017, 61, 637-647.	2.1	50
39	TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Developmental Cell, 2016, 39, 13-27.	3.1	339
40	Autophagy in leukocytes and other cells: mechanisms, subsystem organization, selectivity, and links to innate immunity. Journal of Leukocyte Biology, 2016, 100, 969-978.	1.5	38
41	TRIM17 contributes to autophagy of midbodies while actively sparing other targets from degradation. Journal of Cell Science, 2016, 129, 3562-3573.	1.2	40
42	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
43	Precision autophagy directed by receptor regulators – emerging examples within the TRIM family. Journal of Cell Science, 2016, 129, 881-91.	1.2	81
44	Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis. Advanced Drug Delivery Reviews, 2016, 102, 10-20.	6.6	29
45	Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy, 2016, 12, 429-431.	4.3	36
46	Secretory autophagy. Current Opinion in Cell Biology, 2015, 35, 106-116.	2.6	378
47	Immunologic manifestations of autophagy. Journal of Clinical Investigation, 2015, 125, 75-84.	3.9	135
48	Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. Journal of Experimental Medicine, 2015, 212, 979-990.	4.2	176
49	IRGM Governs the Core Autophagy Machinery to Conduct Antimicrobial Defense. Molecular Cell, 2015, 58, 507-521.	4.5	191
50	Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nature Communications, 2015, 6, 8620.	5.8	130
51	Autophagosomes and lipid droplets: no longer just chewing the fat. EMBO Journal, 2015, 34, 2111-2113.	3.5	10
52	TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. Journal of Cell Biology, 2015, 210, 973-989.	2.3	248
53	TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy, 2014, 10, 2387-2388.	4.3	64
54	Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes… Wait, l'm confused. Autophagy, 2014, 10, 549-551.	4.3	168

#	Article	IF	CITATIONS
55	TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition. Developmental Cell, 2014, 30, 394-409.	3.1	269
56	Autophagy in Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018481-a018481.	2.9	77
57	Neutral Lipid Stores and Lipase PNPLA5 Contribute to Autophagosome Biogenesis. Current Biology, 2014, 24, 609-620.	1.8	213
58	Innate immunity, the constant gardener of antimicrobial defense. Current Opinion in Microbiology, 2013, 16, 293-295.	2.3	2
59	Regulatory Coordination between Two Major Intracellular Homeostatic Systems. Journal of Biological Chemistry, 2013, 288, 14959-14972.	1.6	133
60	PtdIns(3)P-bound UVRAG coordinates Golgi–ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclinÂ1 complex. Nature Cell Biology, 2013, 15, 1206-1219.	4.6	91
61	Autophagy in infection, inflammation and immunity. Nature Reviews Immunology, 2013, 13, 722-737.	10.6	1,571
62	Secretory versus Degradative Autophagy: Unconventional Secretion of Inflammatory Mediators. Journal of Innate Immunity, 2013, 5, 471-479.	1.8	111
63	Autophagy as an immune effector against tuberculosis. Current Opinion in Microbiology, 2013, 16, 355-365.	2.3	101
64	The effect of HSFâ€l and HSP70 on autophagy regulation. FASEB Journal, 2013, 27, 994.7.	0.2	0
65	Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3168-76.	3.3	377
66	Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends in Cell Biology, 2012, 22, 397-406.	3.6	184
67	TBK-1 Promotes Autophagy-Mediated Antimicrobial Defense by Controlling Autophagosome Maturation. Immunity, 2012, 37, 223-234.	6.6	563
68	Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Current Opinion in Immunology, 2012, 24, 21-31.	2.4	255
69	Autophagy: An Emerging Immunological Paradigm. Journal of Immunology, 2012, 189, 15-20.	0.4	154
70	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
71	Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO Journal, 2011, 30, 4701-4711.	3.5	774
72	Autophagy in immunity and cellâ€autonomous defense against intracellular microbes. Immunological Reviews, 2011, 240, 92-104.	2.8	319

#	Article	IF	CITATIONS
73	Lysosomal positioning coordinates cellular nutrient responses. Nature Cell Biology, 2011, 13, 453-460.	4.6	726
74	Thematic issue on how autophagosomes find their targets. Autophagy, 2011, 7, 257-259.	4.3	2
75	Autophagy and p62/sequestosome 1 generate neo-antimicrobial peptides (cryptides) from cytosolic proteins. Autophagy, 2011, 7, 336-337.	4.3	20
76	Relief from Zmp1-Mediated Arrest of Phagosome Maturation Is Associated with Facilitated Presentation and Enhanced Immunogenicity of Mycobacterial Antigens. Vaccine Journal, 2011, 18, 907-913.	3.2	54
77	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	4.3	255
78	Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties. Immunity, 2010, 32, 329-341.	6.6	276
79	Autophagy in infection. Current Opinion in Cell Biology, 2010, 22, 252-262.	2.6	167
80	The role of PI3P phosphatases in the regulation of autophagy. FEBS Letters, 2010, 584, 1313-1318.	1.3	104
81	Human Immunodeficiency Virus-1 Inhibition of Immunoamphisomes in Dendritic Cells Impairs Early Innate and Adaptive Immune Responses. Immunity, 2010, 32, 654-669.	6.6	249
82	Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nature Cell Biology, 2010, 12, 1154-1165.	4.6	228
83	13[C]-Urea Breath Test as a Novel Point-of-Care Biomarker for Tuberculosis Treatment and Diagnosis. PLoS ONE, 2010, 5, e12451.	1.1	26
84	A comprehensive glossary of autophagy-related molecules and processes. Autophagy, 2010, 6, 438-448.	4.3	144
85	A Master Conductor for Aggregate Clearance by Autophagy. Developmental Cell, 2010, 18, 694-696.	3.1	12
86	Autophagy and HIV. Seminars in Cell and Developmental Biology, 2010, 21, 712-718.	2.3	34
87	Autophagy of intracellular microbes and mitochondria: two sides of the same coin?. F1000 Biology Reports, 2010, 2, .	4.0	12
88	Links between Autophagy, Innate Immunity, Inflammation and Crohn's Disease. Digestive Diseases, 2009, 27, 246-251.	0.8	38
89	Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. Journal of Cell Biology, 2009, 186, 255-268.	2.3	446
90	Strange Bedfellows Expose Ancient Secrets of Autophagy in Immunity. Immunity, 2009, 30, 479-481.	6.6	7

#	Article	IF	CITATIONS
91	Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO Journal, 2009, 28, 2244-2258.	3.5	241
92	Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO Journal, 2009, 28, 3780-3780.	3.5	1
93	Toll-like receptors in control of immunological autophagy. Cell Death and Differentiation, 2009, 16, 976-983.	5.0	137
94	Autophagy and pattern recognition receptors in innate immunity. Immunological Reviews, 2009, 227, 189-202.	2.8	159
95	Multiple regulatory and effector roles of autophagy in immunity. Current Opinion in Immunology, 2009, 21, 53-62.	2.4	98
96	Autophagy, Immunity, and Microbial Adaptations. Cell Host and Microbe, 2009, 5, 527-549.	5.1	774
97	Th1–Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Veterinary Immunology and Immunopathology, 2009, 128, 37-43.	0.5	59
98	Autophagy in Immunity Against Mycobacterium tuberculosis: a Model System to Dissect Immunological Roles of Autophagy. Current Topics in Microbiology and Immunology, 2009, 335, 169-188.	0.7	109
99	Chapter 21 Monitoring Autophagy during Mycobacterium tuberculosis Infection. Methods in Enzymology, 2009, 452, 345-361.	0.4	17
100	Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. Journal of Experimental Medicine, 2009, 206, i16-i16.	4.2	0
101	Toll-like receptors control autophagy. EMBO Journal, 2008, 27, 1110-1121.	3.5	673
102	How Cells Clean House. Scientific American, 2008, 298, 74-81.	1.0	31
103	Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 2008, 10, 776-787.	4.6	690
104	Autophagosome and Phagosome. Methods in Molecular Biology, 2008, 445, 1-10.	0.4	51
105	Mycobacterium tuberculosis Prevents Inflammasome Activation. Cell Host and Microbe, 2008, 3, 224-232.	5.1	345
106	Autophagosome-Independent Essential Function for the Autophagy Protein Atg5 in Cellular Immunity to Intracellular Pathogens. Cell Host and Microbe, 2008, 4, 458-469.	5.1	374
107	Autophagy Gives a Nod and a Wink to the Inflammasome and Paneth Cells in Crohn's Disease. Developmental Cell, 2008, 15, 641-642.	3.1	25
108	Autophagy, an immunologic magic bullet: <i>Mycobacterium tuberculosis</i> phagosome maturation block and how to bypass it. Future Microbiology, 2008, 3, 517-524.	1.0	58

#	Article	IF	CITATIONS
109	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
110	The Mycobacterium tuberculosis Phagosome. Methods in Molecular Biology, 2008, 445, 439-449.	0.4	6
111	Autophagic Proteolysis of Long-Lived Proteins in Nonliver Cells. Methods in Molecular Biology, 2008, 445, 111-117.	0.4	25
112	In Vitro Phagosome–Endosome Fusion. Methods in Molecular Biology, 2008, 445, 301-309.	0.4	0
113	Mechanism of Inducible Nitric Oxide Synthase Exclusion from Mycobacterial Phagosomes. PLoS Pathogens, 2007, 3, e186.	2.1	93
114	Nitrosative stress inhibits production of the virulence factor alginate in mucoidPseudomonas aeruginosa. Free Radical Research, 2007, 41, 208-215.	1.5	13
115	Pharmacological modulation of cGMP levels by phosphodiesterase 5 inhibitors as a therapeutic strategy for treatment of respiratory pathology in cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L712-L719.	1.3	41
116	T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium tuberculosis. Immunity, 2007, 27, 505-517.	6.6	413
117	T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium tuberculosis. Immunity, 2007, 27, 685.	6.6	2
118	Phosphoinositides in phagolysosome and autophagosome biogenesis. Biochemical Society Symposia, 2007, 74, 141-148.	2.7	10
119	Unveiling the roles of autophagy in innate and adaptive immunity. Nature Reviews Immunology, 2007, 7, 767-777.	10.6	804
120	Phosphoinositides in phagolysosome and autophagosome biogenesis. Biochemical Society Symposia, 2007, 74, 141.	2.7	12
121	Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A–induced cytotoxicity. Journal of Clinical Investigation, 2007, 117, 3489-3497.	3.9	33
122	Overview of Autophagy. , 2006, , 1-17.		5
123	The inhibition of phagolysosomal biogenesis is fundamental to tuberculosis. Drug Discovery Today Disease Mechanisms, 2006, 3, 247-252.	0.8	0
124	Endogenous Major Histocompatibility Complex Class II Antigen Processing of Viral Antigens. , 2006, , 212-225.		0
125	Autophagy in Antiviral Host Defense. , 2006, , 227-241.		2
126	Cell Biology and Biochemistry of Autophagy. , 2006, , 19-53.		1

#	Article	IF	CITATIONS
127	The Dual Roles for Autophagy in Cell Death and Survival. , 2006, , 105-126.		0
128	Autophagy and Mycobacterium tuberculosis. , 2006, , 127-138.		0
129	Listeria monocytogenes: A Model System for Studying Autophagy. , 2006, , 161-178.		0
130	Chloroquine normalizes aberrant transforming growth factor beta activity in cystic fibrosis bronchial epithelial cells. Pediatric Pulmonology, 2006, 41, 771-778.	1.0	16
131	Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cellular Microbiology, 2006, 8, 719-727.	1.1	273
132	Mechanisms of action of isoniazid. Molecular Microbiology, 2006, 62, 1220-1227.	1.2	359
133	Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO Journal, 2006, 25, 5250-5259.	3.5	152
134	Endosomal hyperacidification in cystic fibrosis is due to defective nitric oxide–cylic GMP signalling cascade. EMBO Reports, 2006, 7, 553-559.	2.0	29
135	Autophagy as an immune defense mechanism. Current Opinion in Immunology, 2006, 18, 375-382.	2.4	186
136	Molecular and Physiological Effects of Mycobacterial oxyR Inactivation. Journal of Bacteriology, 2006, 188, 2674-2680.	1.0	29
137	Nonclassical Pathway of Pseudomonas aeruginosa DNA-Induced Interleukin-8 Secretion in Cystic Fibrosis Airway Epithelial Cells. Infection and Immunity, 2006, 74, 2975-2984.	1.0	29
138	Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria. Science, 2006, 313, 1438-1441.	6.0	831
139	Autophagy in Immune Defense Against Mycobacterium tuberculosis. Autophagy, 2006, 2, 175-178.	4.3	67
140	Higher order Rab programming in phagolysosome biogenesis. Journal of Cell Biology, 2006, 174, 923-929.	2.3	115
141	Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proceedings of the United States of America, 2005, 102, 4033-4038.	3.3	481
142	Autophagy in innate and adaptive immunity. Trends in Immunology, 2005, 26, 523-528.	2.9	197
143	Ay, There's the Rab: Organelle Maturation by Rab Conversion. Developmental Cell, 2005, 9, 446-448.	3.1	8
144	Mycobacterium tuberculosis Reprograms Waves of Phosphatidylinositol 3-Phosphate on Phagosomal Organelles. Journal of Biological Chemistry, 2004, 279, 36982-36992.	1.6	80

#	Article	IF	CITATIONS
145	Microarray Analysis Reveals Induction of Lipoprotein Genes in Mucoid Pseudomonas aeruginosa : Implications for Inflammation in Cystic Fibrosis. Infection and Immunity, 2004, 72, 5012-5018.	1.0	61
146	Requirements for Nitric Oxide Generation from Isoniazid Activation In Vitro and Inhibition of Mycobacterial Respiration In Vivo. Journal of Bacteriology, 2004, 186, 5427-5431.	1.0	41
147	Mycobacteria Inhibit Nitric Oxide Synthase Recruitment to Phagosomes during Macrophage Infection. Infection and Immunity, 2004, 72, 2872-2878.	1.0	122
148	Microarray Analysis and Functional Characterization of the Nitrosative Stress Response in Nonmucoid and Mucoid Pseudomonas aeruginosa. Journal of Bacteriology, 2004, 186, 4046-4050.	1.0	59
149	Mycobacterium tuberculosisPhagosome Maturation Arrest: Mycobacterial Phosphatidylinositol Analog Phosphatidylinositol Mannoside Stimulates Early Endosomal Fusion. Molecular Biology of the Cell, 2004, 15, 751-760.	0.9	238
150	Endosomal membrane traffic: convergence point targeted by Mycobacterium tuberculosis and HIV. Cellular Microbiology, 2004, 6, 999-1009.	1.1	46
151	Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Molecular Microbiology, 2004, 39, 1174-1185.	1.2	118
152	CELL BIOLOGY OFMYCOBACTERIUM TUBERCULOSISPHAGOSOME. Annual Review of Cell and Developmental Biology, 2004, 20, 367-394.	4.0	397
153	Nitric Oxide Generated from Isoniazid Activation by KatG: Source of Nitric Oxide and Activity against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2004, 48, 3006-3009.	1.4	76
154	Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages. Cell, 2004, 119, 753-766.	13.5	1,996
155	A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Current Opinion in Microbiology, 2004, 7, 71-77.	2.3	94
156	Mycobacterium tuberculosis Phagosome Maturation Arrest: Selective Targeting of PI3P-Dependent Membrane Trafficking. Traffic, 2003, 4, 600-606.	1.3	103
157	Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5437-5442.	3.3	435
158	Inhibition of InhA Activity, but Not KasA Activity, Induces Formation of a KasA-containing Complex in Mycobacteria. Journal of Biological Chemistry, 2003, 278, 20547-20554.	1.6	66
159	Microarray Analysis of Global Gene Expression in Mucoid Pseudomonas aeruginosa. Journal of Bacteriology, 2003, 185, 1071-1081.	1.0	150
160	Tuberculosis Toxin Blocking Phagosome Maturation Inhibits a Novel Ca2+/Calmodulin-PI3K hVPS34 Cascade. Journal of Experimental Medicine, 2003, 198, 653-659.	4.2	307
161	Induction of p38 Mitogen-activated Protein Kinase Reduces Early Endosome Autoantigen 1 (EEA1) Recruitment to Phagosomal Membranes. Journal of Biological Chemistry, 2003, 278, 46961-46967.	1.6	109
162	Hyperacidification of Cellubrevin Endocytic Compartments and Defective Endosomal Recycling in Cystic Fibrosis Respiratory Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 13959-13965.	1.6	41

#	Article	IF	CITATIONS
163	Cellubrevin Alterations and Mycobacterium tuberculosis Phagosome Maturation Arrest. Journal of Biological Chemistry, 2002, 277, 17320-17326.	1.6	50
164	Global Genomic Analysis of AlgU (σE)-Dependent Promoters (Sigmulon) in Pseudomonas aeruginosa and Implications for Inflammatory Processes in Cystic Fibrosis. Journal of Bacteriology, 2002, 184, 1057-1064.	1.0	96
165	Reactive Nitrogen and Oxygen Intermediates and Bacterial Defenses: Unusual Adaptations inMycobacterium tuberculosis. Antioxidants and Redox Signaling, 2002, 4, 141-159.	2.5	92
166	Hyperacidification in cystic fibrosis: links with lung disease and new prospects for treatment. Trends in Molecular Medicine, 2002, 8, 512-519.	3.5	68
167	Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Molecular Microbiology, 2001, 40, 879-889.	1.2	126
168	Mapping of Mycobacterium tuberculosis katG Promoters and Their Differential Expression in Infected Macrophages. Journal of Bacteriology, 2001, 183, 4033-4039.	1.0	46
169	Silencing of Oxidative Stress Response in Mycobacterium tuberculosis : Expression Patterns of ahpC in Virulent and Avirulent Strains and Effect of ahpC Inactivation. Infection and Immunity, 2001, 69, 5967-5973.	1.0	96
170	Mycobacterium tuberculosis signal transduction system required for persistent infections. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12706-12711.	3.3	212
171	Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. Journal of Cell Biology, 2001, 154, 631-644.	2.3	479
172	Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13972-13977.	3.3	83
173	Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Molecular Microbiology, 2001, 39, 1174-1185.	1.2	3
174	Regulators of membrane trafficking andMycobacterium tuberculosis phagosome maturation block. Electrophoresis, 2000, 21, 3378-3385.	1.3	42
175	Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Molecular Microbiology, 2000, 36, 314-327.	1.2	72
176	Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Molecular Microbiology, 2000, 36, 341-351.	1.2	86
177	An Essential Two-Component Signal Transduction System in Mycobacterium tuberculosis. Journal of Bacteriology, 2000, 182, 3832-3838.	1.0	196
178	Innate Lung Defenses and Compromised Pseudomonas aeruginosa Clearance in the Malnourished Mouse Model of Respiratory Infections in Cystic Fibrosis. Infection and Immunity, 2000, 68, 2142-2147.	1.0	63
179	Arrest of Mycobacterial Phagosome Maturation Is Caused by a Block in Vesicle Fusion between Stages Controlled by rab5 and rab7. Journal of Biological Chemistry, 1997, 272, 13326-13331.	1.6	487
180	Loss of oxyR in Mycobacterium tuberculosis. Trends in Microbiology, 1997, 5, 367-372.	3.5	52

#	Article	IF	CITATIONS
181	Mycobacterial phagosome maturation, rab proteins, and intracellular trafficking. Electrophoresis, 1997, 18, 2542-2547.	1.3	320
182	Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proceedings of the United States of America, 1996, 93, 13212-13216.	3.3	117
183	Biochemical Characterization and Posttranslational Modification of Algu, a Regulator of Stress Response in Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 1995, 216, 874-880.	1.0	35
184	Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends in Microbiology, 1995, 3, 351-356.	3.5	115
185	The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. Molecular Genetics and Genomics, 1994, 242, 177-184.	2.4	45
186	Host dependenet inactivation by IS2 of induced E.coli penicillin amidase gene cloned on multicopy plasmids. Biotechnology Letters, 1993, 15, 7-12.	1.1	4
187	In vitro interactions of the histone-like protein IHF with the algD promoter, a critical site for control of mucoidy in Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 1992, 189, 837-844.	1.0	24
188	Mucoid Pseudomonas aeruginosa and cystic fibrosis: The role of mutations in muc loci. FEMS Microbiology Letters, 1992, 100, 323-329.	0.7	3
189	Broad-host-range plasmid and M13 bacteriophage-derived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa. Gene, 1988, 74, 375-386.	1.0	67
190	Pseudomonas aeruginosainfection in cystic fibrosis: nucleotide sequence and transcriptional regulation of thealgDgene. Nucleic Acids Research, 1987, 15, 4567-4581.	6.5	137
191	A set of cassettes and improved vectors for genetic and biochemical characterization of pseudomonas genes. Gene, 1987, 57, 61-72.	1.0	91
192	Autophagy: a Fundamental Cytoplasmic Sanitation Process Operational in All Cell Types Including Macrophages. , 0, , 419-425.		0