
Stephen H Howell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413075/publications.pdf Version: 2024-02-01

STERHEN H HOWELL

#	Article	IF	CITATIONS
1	Review: The two faces of IRE1 and their role in protecting plants from stress. Plant Science, 2021, 303, 110758.	3.6	17
2	Heat Stress Responses and Thermotolerance in Maize. International Journal of Molecular Sciences, 2021, 22, 948.	4.1	57
3	Daily temperature cycles promote alternative splicing of RNAs encoding SR45a, a splicing regulator in maize. Plant Physiology, 2021, 186, 1318-1335.	4.8	16
4	Evolution of the unfolded protein response in plants. Plant, Cell and Environment, 2021, 44, 2625-2635.	5.7	28
5	Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses. Plant Journal, 2021, 107, 1837-1853.	5.7	4
6	Control of translation during the unfolded protein response in maize seedlings: Life without PERKs. Plant Direct, 2020, 4, e00241.	1.9	11
7	The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize. Plant Cell, 2020, 32, 3559-3575.	6.6	75
8	Assessing plant performance in the Enviratron. Plant Methods, 2019, 15, 117.	4.3	13
9	A Functional Unfolded Protein Response Is Required for Normal Vegetative Development. Plant Physiology, 2019, 179, 1834-1843.	4.8	37
10	Response to Persistent ER Stress in Plants: A Multiphasic Process That Transitions Cells from Prosurvival Activities to Cell Death. Plant Cell, 2018, 30, 1220-1242.	6.6	67
11	IRE1B degrades RNAs encoding proteins that interfere with the induction of autophagy by ER stress in <i>Arabidopsis thaliana</i> . Autophagy, 2018, 14, 1562-1573.	9.1	66
12	Cis-Effects Condition the Induction of a Major Unfolded Protein Response Factor, ZmbZIP60, in Response to Heat Stress in Maize. Frontiers in Plant Science, 2018, 9, 833.	3.6	23
13	When is the unfolded protein response not the unfolded protein response?. Plant Science, 2017, 260, 139-143.	3.6	16
14	The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes. Plant Physiology, 2017, 173, 1137-1145.	4.8	24
15	The Unfolded Protein Response Supports Plant Development and Defense as well as Responses to Abiotic Stress. Frontiers in Plant Science, 2017, 8, 344.	3.6	74
16	<scp>IRE</scp> 1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. Plant Journal, 2016, 88, 193-204.	5.7	113
17	Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant Journal, 2016, 85, 83-95.	5.7	131
18	Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytologist, 2016, 211, 418-428.	7.3	165

STEPHEN H HOWELL

#	Article	IF	CITATIONS
19	Endoplasmic reticulumââ,¬â€shape and function in stress translation. Frontiers in Plant Science, 2014, 5, 425.	3.6	8
20	Stress sensing in plants by an ER stress sensor/transducer, bZIP28. Frontiers in Plant Science, 2014, 5, 59.	3.6	72
21	ER Stress Signaling in Plants. , 2014, , 213-243.		Ο
22	Cytoplasm: ER Stress. , 2014, , 1-25.		0
23	Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19633-19638.	7.1	132
24	Endoplasmic Reticulum Stress Responses in Plants. Annual Review of Plant Biology, 2013, 64, 477-499.	18.7	422
25	Endoplasmic Reticulum (ER) Stress Response and Its Physiological Roles in Plants. International Journal of Molecular Sciences, 2013, 14, 8188-8212.	4.1	98
26	BINDING PROTEIN Is a Master Regulator of the Endoplasmic Reticulum Stress Sensor/Transducer bZIP28 in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 1416-1429.	6.6	139
27	Integrating active learning into a large introductory course: Preparing students for success in science. FASEB Journal, 2013, 27, 739.9.	0.5	Ο
28	Degradation of the Endoplasmic Reticulum by Autophagy during Endoplasmic Reticulum Stress in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4635-4651.	6.6	246
29	ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Research Notes, 2012, 5, 144.	1.4	65
30	Processing of Peptides. Signaling and Communication in Plants, 2012, , 199-215.	0.7	0
31	Elements proximal to and within the transmembrane domain mediate the organelleâ€toâ€organelle movement of bZIP28 under ER stress conditions. Plant Journal, 2012, 70, 1033-1042.	5.7	57
32	Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7247-7252.	7.1	405
33	bZIP28 and NF-Y Transcription Factors Are Activated by ER Stress and Assemble into a Transcriptional Complex to Regulate Stress Response Genes in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 782-796.	6.6	356
34	Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants. Plant Cell, 2010, 22, 2930-2942.	6.6	413
35	Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. Planta, 2009, 230, 687-697.	3.2	20
36	Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant Journal, 2009, 59, 930-939.	5.7	174

STEPHEN H HOWELL

#	Article	IF	CITATIONS
37	Proteolytic processing of a precursor protein for a growthâ€promoting peptide by a subtilisin serine protease in Arabidopsis. Plant Journal, 2008, 56, 219-227.	5.7	134
38	Stressâ€induced expression of an activated form of AtbZIP17 provides protection from salt stress in <i>Arabidopsis</i> . Plant, Cell and Environment, 2008, 31, 1735-1743.	5.7	116
39	Salt stress signaling in Arabidopsis thaliana involves a membrane-bound transcription factor AtbZIP17 as a signal transducer. Plant Signaling and Behavior, 2008, 3, 56-57.	2.4	14
40	An Endoplasmic Reticulum Stress Response in <i>Arabidopsis</i> Is Mediated by Proteolytic Processing and Nuclear Relocation of a Membrane-Associated Transcription Factor, bZIP28. Plant Cell, 2008, 19, 4111-4119.	6.6	394
41	Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant Journal, 2007, 51, 897-909.	5.7	401
42	Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 2007, 226, 1183-1194.	3.2	168
43	Gene Expression Programs during Shoot, Root, and Callus Development in Arabidopsis Tissue Culture. Plant Physiology, 2006, 141, 620-637.	4.8	225
44	Gene Expression Patterns During Somatic Embryo Development and Germination in Maize Hi II Callus Cultures. Plant Molecular Biology, 2006, 62, 1-14.	3.9	80
45	The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis Regulates CUP-SHAPED COTYLEDON 1 at the Transcriptional Level and Controls Cotyledon Development. Plant and Cell Physiology, 2006, 47, 1443-1456.	3.1	154
46	Genetic Regulation of Gene Expression During Shoot Development in Arabidopsis. Genetics, 2006, 172, 1155-1164.	2.9	131
47	Quantitative Trait Loci Associated With Adventitious Shoot Formation in Tissue Culture and the Program of Shoot Development in Arabidopsis. Genetics, 2004, 167, 1883-1892.	2.9	33
48	Cytokinins and shoot development. Trends in Plant Science, 2003, 8, 453-459.	8.8	124
49	Global and Hormone-Induced Gene Expression Changes during Shoot Development in Arabidopsis. Plant Cell, 2002, 14, 2771-2785.	6.6	186
50	Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant Journal, 2002, 32, 867-877.	5.7	130
51	Arabidopsis mutants with increased organ regeneration in tissue culture are more competent to respond to hormonal signals. Planta, 2001, 213, 700-707.	3.2	52