Debora Barros Barbosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 2009, 34, 103-110.	2.5	665
2	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans</i> and <i>Candida glabrata</i> . Biofouling, 2011, 27, 711-719.	2.2	186
3	Silver Distribution and Release from an Antimicrobial Denture Base Resin Containing Silver Colloidal Nanoparticles. Journal of Prosthodontics, 2012, 21, 7-15.	3.7	135
4	Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012, 54, 383-391.	2.2	94
5	Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against <i><scp>C</scp>andida albicans</i> and <i><scp>C</scp>andida glabrata</i> biofilms. Mycoses, 2013, 56, 672-680.	4.0	83
6	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata</i> and <i>Candida albicans</i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.7	72
7	Biofilm formation by <i>Candida albicans</i> and <i>Streptococcus mutans</i> in the presence of farnesol: a quantitative evaluation. Biofouling, 2016, 32, 329-338.	2.2	63
8	The effect of polymerization cycles on porosity of microwave-processed denture base resin. Journal of Prosthetic Dentistry, 2004, 91, 281-285.	2.8	58
9	Relationship between <i>Candida</i> and nocturnal denture wear: quantitative study. Journal of Oral Rehabilitation, 2007, 34, 600-605.	3.0	58
10	Silver colloidal nanoparticles: effect on matrix composition and structure of <i>Candida albicans</i> and <i>Candida glabrata</i> biofilms. Journal of Applied Microbiology, 2013, 114, 1175-1183.	3.1	54
11	Flexural strength of acrylic resins polymerized by different cycles. Journal of Applied Oral Science, 2007, 15, 424-428.	1.8	52
12	Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. Journal of Prosthodontic Research, 2015, 59, 42-48.	2.8	50
13	Activity of tyrosol against single and mixed-species oral biofilms. Journal of Applied Microbiology, 2016, 120, 1240-1249.	3.1	50
14	InÂVitro and InÂVivo Toxicity Evaluation ofÂColloidal Silver Nanoparticles Used inÂEndodontic Treatments. Journal of Endodontics, 2016, 42, 953-960.	3.1	50
15	Evaluation of the Bond Strength of Denture Base Resins to Acrylic Resin Teeth: Effect of Thermocycling. Journal of Prosthodontics, 2009, 18, 438-443.	3.7	44
16	Antifungal activity of tyrosol and farnesol used in combination against <i>Candida</i> species in the planktonic state or forming biofilms. Journal of Applied Microbiology, 2017, 123, 392-400.	3.1	41
17	Bond strength of denture teeth to acrylic resin: effect of thermocycling and polymerisation methods. Gerodontology, 2008, 25, 237-244.	2.0	37
18	Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering C, 2021, 118, 111341.	7.3	37

#	Article	IF	CITATIONS
19	Effect of monomer treatment and polymerisation methods on the bond strength of resin teeth to denture base material. Gerodontology, 2009, 26, 225-231.	2.0	35
20	Effect of tyrosol on adhesion ofCandida albicansandCandida glabratato acrylic surfaces. Medical Mycology, 2015, 53, 656-665.	0.7	31
21	Oral health-related quality of life and satisfaction before and after treatment with complete dentures in a Dental School in Brazil. Journal of Prosthodontic Research, 2013, 57, 36-41.	2.8	27
22	Complete denture wearing and fractures among edentulous patients treated in university clinics. Gerodontology, 2012, 29, e728-34.	2.0	24
23	Influence of Microwave Polymerization Method and Thickness on Porosity of Acrylic Resin. Journal of Prosthodontics, 2008, 17, 125-129.	3.7	23
24	Antimicrobial Potential and Cytotoxicity of Silver Nanoparticles Phytosynthesized by Pomegranate Peel Extract. Antibiotics, 2018, 7, 51.	3.7	23
25	Changes in occlusal vertical dimension in microwave processing of complete dentures. Brazilian Dental Journal, 2002, 13, 197-200.	1.1	22
26	Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Medical Mycology, 2014, 52, 627-635.	0.7	22
27	Virulence Factors in Candida albicans and Streptococcus mutans Biofilms Mediated by Farnesol. Indian Journal of Microbiology, 2018, 58, 138-145.	2.7	22
28	Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Association against Oral Pathogens. Antibiotics, 2018, 7, 52.	3.7	22
29	Complete denture hygiene and nocturnal wearing habits among patients attending the Prosthodontic Department in a Dental University in Brazil. Gerodontology, 2011, 28, 91-96.	2.0	21
30	Green synthesis of silver nanoparticles combined to calcium glycerophosphate: antimicrobial and antibiofilm activities. Future Microbiology, 2018, 13, 345-357.	2.0	21
31	Effect of synthetic colloidal nanoparticles in acrylic resin of dental use. European Polymer Journal, 2019, 112, 531-538.	5.4	20
32	Effect of storage in artificial saliva and thermal cycling on Knoop hardness of resin denture teeth. Journal of Prosthodontic Research, 2010, 54, 123-127.	2.8	19
33	Kinesiographic study of mandibular movements during functional adaptation to complete dentures. Journal of Applied Oral Science, 2003, 11, 311-318.	1.8	17
34	Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 114, 410-412.	5.0	17
35	Differential effects of the combination of tyrosol with chlorhexidine gluconate on oral biofilms. Oral Diseases, 2017, 23, 537-541.	3.0	17
36	Sodium trimetaphosphate and hexametaphosphate impregnated with silver nanoparticles: characteristics and antimicrobial efficacy. Biofouling, 2018, 34, 299-308.	2.2	15

Debora Barros Barbosa

#	Article	IF	CITATIONS
37	Measurement of Interfacial Porosity at the Acrylic Resin/Denture Tooth Interface. Journal of Prosthodontics, 2010, 19, 42-46.	3.7	9
38	Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol. Indian Journal of Microbiology, 2019, 59, 147-153.	2.7	9
39	Effect of methyl methacrylate monomer on bond strength of denture base resin to acrylic teeth. International Journal of Adhesion and Adhesives, 2009, 29, 391-395.	2.9	8
40	Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces. American Journal of Dentistry, 2017, 30, 35-39.	0.1	8
41	Study of the activity of Punica granatum-mediated silver nanoparticles against Candida albicans and Candida glabrata, alone or in combination with azoles or polyenes. Medical Mycology, 2020, 58, 564-567.	0.7	6
42	Green and Chemical Silver Nanoparticles and Pomegranate Formulations to Heal Infected Wounds in Diabetic Rats. Antibiotics, 2021, 10, 1343.	3.7	4
43	Nanostructured Functional Materials: Silver Nanoparticles in Polymer for the Generation of Antimicrobial Characteristics. , 2017, , 271-292.		3
44	Silver and phosphate nanoparticles: Antimicrobial approach and caries prevention application. , 2019, , 225-242.		2
45	Resistência de união entre dentes artificiais e resinas acrÃlicas para base protética. Polimeros, 2007, 17, 194-200.	0.7	1
46	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
47	Silver and Polyphosphate Nanoparticles. , 0, , 7263-7274.		0