Yuanfei Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130399/publications.pdf

Version: 2024-02-01

		430874	477307
39	927	18	29
papers	citations	h-index	g-index
39	39	39	577
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Stretch-induced structural evolution of pre-oriented isotactic polypropylene films: An in-situ synchrotron radiation SAXS/WAXS study. Polymer, 2021, 214, 123234.	3.8	17
2	Stretch-induced structural transition of linear low-density polyethylene during uniaxial stretching under different strain rates. Polymer, 2021, 226, 123795.	3.8	15
3	Microstructural Origin of the Double Yield Points of the Metallocene Linear Low-Density Polyethylene (mLLDPE) Precursor Film under Uniaxial Tensile Deformation. Polymers, 2021, 13, 126.	4.5	3
4	Reconstructing the mechanical response of polybutadiene rubber based on micro-structural evolution in strain-temperature space: entropic elasticity and strain-induced crystallization as the bridges. Soft Matter, 2020, 16, 447-455.	2.7	16
5	Understanding the brittle-ductile transition of glass polymer on mesoscopic scale by in-situ small angle X-ray scattering. Polymer, 2020, 209, 122985.	3.8	15
6	Stretch-Induced Reverse Brill Transition in Polyamide 46. Macromolecules, 2020, 53, 11153-11165.	4.8	21
7	Uniaxially stretched polyethylene/boron nitride nanocomposite films with metal-like thermal conductivity. Composites Science and Technology, 2020, 196, 108154.	7.8	31
8	Stretch-Induced Intermediate Structures and Crystallization of Poly(dimethylsiloxane): The Effect of Filler Content. Macromolecules, 2020, 53, 719-730.	4.8	23
9	Recent advances in post-stretching processing of polymer films with <i>in situ</i> synchrotron radiation X-ray scattering. Soft Matter, 2020, 16, 3599-3612.	2.7	29
10	The recovery of nano-sized carbon black filler structure and its contribution to stress recovery in rubber nanocomposites. Nanoscale, 2020, 12, 24527-24542.	5.6	14
11	Precursor assisted crystallization in cross-linked isotactic polypropylene. Polymer, 2019, 180, 121674.	3.8	6
12	Structural evolution of cellulose triacetate film during stretching deformation: An in-situ synchrotron radiation wide-angle X-Ray scattering study. Polymer, 2019, 182, 121815.	3.8	12
13	Structural evolution of hard-elastic polyethylene cast film in temperature-strain space: An in-situ SAXS and WAXS study. Polymer, 2019, 184, 121930.	3.8	15
14	<i>In situ</i> characterization of strain-induced crystallization of natural rubber by synchrotron radiation wide-angle X-ray diffraction: construction of a crystal network at low temperatures. Soft Matter, 2019, 15, 734-743.	2.7	27
15	Deformation mechanism of hard elastic polyethylene film during uniaxial stretching: Effect of stretching speed. Polymer, 2019, 178, 121579.	3.8	23
16	Strain-induced crystal growth and molecular orientation of poly(isobutylene-isoprene) rubber at low temperatures. Soft Matter, 2019, 15, 4363-4370.	2.7	10
17	Structural origin for the strain rate dependence of mechanical response of fluoroelastomer F2314. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 607-620.	2.1	11
18	Stretch-induced complexation reaction between poly(vinyl alcohol) and iodine: an <i>in situ</i> synchrotron radiation small- and wide-angle X-ray scattering study. Soft Matter, 2018, 14, 2535-2546.	2.7	29

#	Article	IF	CITATIONS
19	Structure evolution of polyethylene-plasticizer film at industrially relevant conditions studied by in-situ X-ray scattering: The role of crystal stress. European Polymer Journal, 2018, 101, 358-367.	5.4	17
20	Structural Evolution of UHMWPE Fibers during Prestretching Far and Near Melting Temperature: An In Situ Synchrotron Radiation Small―and Wideâ€Angle Xâ€Ray Scattering Study. Macromolecular Materials and Engineering, 2018, 303, 1700493.	3.6	18
21	Structural Evolution of Hard-Elastic Isotactic Polypropylene Film during Uniaxial Tensile Deformation: The Effect of Temperature. Macromolecules, 2018, 51, 2690-2705.	4.8	82
22	Stretch-induced structural evolution of poly (vinyl alcohol) film in water at different temperatures: An in-situ synchrotron radiation small- and wide-angle X-ray scattering study. Polymer, 2018, 142, 233-243.	3.8	34
23	Stretch-Induced Crystallization and Phase Transitions of Poly(dimethylsiloxane) at Low Temperatures: An <i>in Situ</i> Synchrotron Radiation Wide-Angle X-ray Scattering Study. Macromolecules, 2018, 51, 8424-8434.	4.8	25
24	Microbuckling: A possible mechanism to trigger nonlinear instability of semicrystalline polymer. Polymer, 2018, 154, 48-54.	3.8	13
25	Stress-induced microphase separation of interlamellar amorphous phase in hard-elastic isotactic polypropylene film. Polymer, 2018, 148, 79-92.	3.8	31
26	Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: An in-situ synchrotron radiation SAXS/WAXS study. Polymer, 2017, 118, 12-21.	3.8	53
27	Deformation of Ultrahigh Molecular Weight Polyethylene Precursor Fiber: Crystal Slip with or without Melting. Macromolecules, 2017, 50, 6385-6395.	4.8	57
28	Stabilization Mechanism of Micropore in Highâ€Density Polyethylene: A Comparison between Thermal and Mechanical Pathways. Macromolecular Materials and Engineering, 2017, 302, 1700178.	3.6	10
29	Improving the softness of BOPP films: From laboratory investigation to industrial processing. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1122-1131.	3.8	12
30	Mechanical energy and thermal effect controlled micropore nucleation and growth mechanism in oriented high density polyethylene. Polymer, 2017, 133, 240-249.	3.8	12
31	Preparation of Highly Oriented Polyethylene Precursor Film with Fibril and Its Influence on Microporous Membrane Formation. Macromolecular Chemistry and Physics, 2016, 217, 974-986.	2.2	12
32	Influence of material characteristics on the structure and properties of high-density polyethylene microporous membranes. RSC Advances, 2016, 6, 62769-62777.	3.6	7
33	Biaxial stretch-induced crystallization of poly(ethylene terephthalate) above glass transition temperature: The necessary of chain mobility. Polymer, 2016, 101, 15-23.	3.8	37
34	Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation. Polymer, 2016, 105, 264-275.	3.8	38
35	A semi-quantitative deformation model for pore formation in isotactic polypropylene microporous membrane. Polymer, 2015, 80, 214-227.	3.8	68
36	A Universal equipment for biaxial stretching of polymer films. Chinese Journal of Polymer Science (English Edition), 2015, 33, 754-762.	3.8	26

3

YUANFEI LIN

#	Article	IF	CITATIONS
37	In situ study of the annealing process of a polyethylene cast film with a row-nucleated crystalline structure by SAXS. RSC Advances, 2015, 5, 27722-27734.	3.6	13
38	Constrained and free uniaxial stretching induced crystallization of polyethylene film: A comparative study. Polymer Testing, 2014, 36, 110-118.	4.8	17
39	A simple constrained uniaxial tensile apparatus for in situ investigation of film stretching processing. Review of Scientific Instruments, 2013, 84, 115104.	1.3	28