Richard J Delahay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413005/publications.pdf

Version: 2024-02-01

99 papers 3,435 citations

32 h-index 54 g-index

100 all docs

100 docs citations

100 times ranked

3440 citing authors

#	Article	IF	CITATIONS
1	A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildlife Research, 2001, 28, 151.	1.4	255
2	The status of tuberculosis in European wild mammals. Mammal Review, 2012, 42, 193-206.	4.8	168
3	Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathogens, 2014, 10, e1004129.	4.7	135
4	Culling and cattle controls influence tuberculosis risk for badgers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14713-14717.	7.1	134
5	Bacillus Calmette-Guérin vaccination reduces the severity and progression of tuberculosis in badgers. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1913-1920.	2.6	125
6	Badger social networks correlate with tuberculosis infection. Current Biology, 2013, 23, R915-R916.	3.9	121
7	Culling-induced social perturbation in Eurasian badgers <i>Meles meles</i> and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2769-2777.	2.6	111
8	Using Social Network Measures in Wildlife Disease Ecology, Epidemiology, and Management. BioScience, 2017, 67, 245-257.	4.9	107
9	BCG Vaccination Reduces Risk of Tuberculosis Infection in Vaccinated Badgers and Unvaccinated Badger Cubs. PLoS ONE, 2012, 7, e49833.	2.5	93
10	Assessing the risks of SARS-CoV-2 in wildlife. One Health Outlook, 2021, 3, 7.	3.4	87
11	Mating system of the Eurasian badger, Meles meles, in a high density population. Molecular Ecology, 2004, 14, 273-284.	3.9	83
12	The application of statistical network models in disease research. Methods in Ecology and Evolution, 2017, 8, 1026-1041.	5.2	80
13	Experimental evidence of competitive release in sympatric carnivores. Biology Letters, 2008, 4, 170-172.	2.3	66
14	Perturbing implications of wildlife ecology for disease control. Trends in Ecology and Evolution, 2008, 23, 53-56.	8.7	66
15	Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180211.	4.0	64
16	Performance of Proximity Loggers in Recording Intra- and Inter-Species Interactions: A Laboratory and Field-Based Validation Study. PLoS ONE, 2012, 7, e39068.	2.5	63
17	Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. ELife, $2019,8,.$	6.0	63

Validation of the BrockTB Stat-Pak Assay for Detection of Tuberculosis in Eurasian Badgers (Meles) Tj ETQq $0\ 0\ 0$ rgBT /Overlock $10\ Tf\ 50\ 3.9\ 61$

2008, 46, 1498-1500.

18

#	Article	IF	Citations
19	Genetic evidence that culling increases badger movement: implications for the spread of bovine tuberculosis. Molecular Ecology, 2007, 16, 4919-4929.	3.9	59
20	Diagnostic Accuracy and Optimal Use of Three Tests for Tuberculosis in Live Badgers. PLoS ONE, 2010, 5, e11196.	2.5	58
21	Sex differences in senescence: the role of intra-sexual competition in early adulthood. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151086.	2.6	53
22	The diversity of population responses to environmental change. Ecology Letters, 2019, 22, 342-353.	6.4	52
23	Effectiveness of Biosecurity Measures in Preventing Badger Visits to Farm Buildings. PLoS ONE, 2011, 6, e28941.	2.5	49
24	Spatial Organization of the Yellow-Necked Mouse: Effects of Density and Resource Availability. Journal of Mammalogy, 2009, 90, 704-714.	1.3	46
25	Density and abundance of badger social groups in England and Wales in 2011–2013. Scientific Reports, 2014, 4, 3809.	3.3	45
26	Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecology Letters, 2016, 19, 443-449.	6.4	45
27	Wildlife surveillance using deep learning methods. Ecology and Evolution, 2019, 9, 9453-9466.	1.9	45
28	Behaviour of badgers (Meles meles) in farm buildings: Opportunities for the transmission of Mycobacterium bovis to cattle?. Applied Animal Behaviour Science, 2009, 117, 103-113.	1.9	41
29	Individual foraging specialisation in a social mammal: the European badger (Meles meles). Oecologia, 2014, 176, 409-421.	2.0	40
30	Advances and prospects for management of TB transmission between badgers and cattle. Veterinary Microbiology, 2011, 151, 43-50.	1.9	39
31	Resource availability affects individual niche variation and its consequences in group-living European badgers Meles meles. Oecologia, 2015, 178, 31-43.	2.0	39
32	Age-Related Declines and Disease-Associated Variation in Immune Cell Telomere Length in a Wild Mammal. PLoS ONE, 2014, 9, e108964.	2.5	37
33	Impacts of Removing Badgers on Localised Counts of Hedgehogs. PLoS ONE, 2014, 9, e95477.	2.5	34
34	Contact networks structured by sex underpin sexâ€specific epidemiology of infection. Ecology Letters, 2018, 21, 309-318.	6.4	33
35	Denning behaviour of the European badger (Meles meles) correlates with bovine tuberculosis infection status. Behavioral Ecology and Sociobiology, 2013, 67, 471-479.	1.4	31
36	The variability and seasonality of the environmental reservoir of Mycobacterium bovis shed by wild European badgers. Scientific Reports, 2015, 5, 12318.	3.3	31

#	Article	IF	CITATIONS
37	Abundance of badgers (Meles meles) in England and Wales. Scientific Reports, 2017, 7, 276.	3.3	31
38	Social structure contains epidemics and regulates individual roles in disease transmission in a groupâ€living mammal. Ecology and Evolution, 2018, 8, 12044-12055.	1.9	30
39	Quantification of the Animal Tuberculosis Multi-Host Community Offers Insights for Control. Pathogens, 2020, 9, 421.	2.8	29
40	Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152949.	2.6	25
41	Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140526.	2.6	24
42	Performance of a Noninvasive Test for Detecting Mycobacterium bovis Shedding in European Badger (Meles meles) Populations. Journal of Clinical Microbiology, 2015, 53, 2316-2323.	3.9	24
43	Inference of the infection status of individuals using longitudinal testing data from cryptic populations: Towards a probabilistic approach to diagnosis. Scientific Reports, 2017, 7, 1111.	3.3	24
44	Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles). PLoS ONE, 2015, 10, e0135920.	2.5	24
45	ESTIMATING THE RISK OF CATTLE EXPOSURE TO TUBERCULOSIS POSED BY WILD DEER RELATIVE TO BADGERS IN ENGLAND AND WALES. Journal of Wildlife Diseases, 2009, 45, 1104-1120.	0.8	23
46	An Inter-Laboratory Validation of a Real Time PCR Assay to Measure Host Excretion of Bacterial Pathogens, Particularly of Mycobacterium bovis. PLoS ONE, 2011, 6, e27369.	2.5	22
47	Development of a novel immunochromatographic lateral flow assay specific for Mycobacterium bovis cells and its application in combination with immunomagnetic separation to test badger faeces. BMC Veterinary Research, 2017, 13, 131.	1.9	22
48	What has molecular epidemiology ever done for wildlife disease research? Past contributions and future directions. European Journal of Wildlife Research, 2015, 61, 1-16.	1.4	21
49	Seasonal variation in daily patterns of social contacts in the European badger <i>Meles meles</i> Ecology and Evolution, 2017, 7, 9006-9015.	1.9	21
50	Inbreeding intensifies sex―and ageâ€dependent disease in a wild mammal. Journal of Animal Ecology, 2018, 87, 1500-1511.	2.8	21
51	Birds in the diet of the Eurasian badger Meles meles: a review and meta-analysis. Mammal Review, 2005, 35, 199-209.	4.8	20
52	Whisker growth in wild Eurasian badgers Meles meles: implications for stable isotope and bait marking studies. European Journal of Wildlife Research, 2013, 59, 341-350.	1.4	20
53	Association of quantitative interferonâ€ <i>γ</i> responses with the progression of naturally acquired <i>Mycobacterium bovis</i> infection in wild European badgers (<i>Meles meles</i>). Immunology, 2015, 144, 263-270.	4.4	20
54	Contact chains of cattle farms in Great Britain. Royal Society Open Science, 2019, 6, 180719.	2.4	20

#	Article	IF	CITATIONS
55	The diet of Little OwlsAthene noctuain Gloucestershire, England. Bird Study, 2004, 51, 282-284.	1.0	19
56	The behavioural responses of badgers (Meles meles) to exclusion from farm buildings using an electric fence. Applied Animal Behaviour Science, 2008, 113, 224-235.	1.9	17
57	Model of Selective and Non-Selective Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle. PLoS ONE, 2016, 11, e0167206.	2.5	17
58	Behaviour of European badgers and non-target species towards candidate baits for oral delivery of a tuberculosis vaccine. Preventive Veterinary Medicine, 2016, 135, 95-101.	1.9	17
59	Evaluation of the Dual Path Platform (DPP) VetTB assay for the detection of Mycobacterium bovis infection in badgers. Preventive Veterinary Medicine, 2020, 180, 105005.	1.9	16
60	Can learned aversion be used to control bait uptake by Eurasian badgers?. Applied Animal Behaviour Science, 2005, 92, 159-168.	1.9	15
61	Blood thicker than water: kinship, disease prevalence and group size drive divergent patterns of infection risk in a social mammal. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160798.	2.6	14
62	Antibodies to Toxoplasma gondii in Eurasian Badgers. Journal of Wildlife Diseases, 2006, 42, 179-181.	0.8	13
63	Effects of trading networks on the risk of bovine tuberculosis incidents on cattle farms in Great Britain. Royal Society Open Science, 2020, 7, 191806.	2.4	13
64	Effects of bait type and deployment strategy on uptake by free-living badgers. Wildlife Research, 2007, 34, 454.	1.4	12
65	Field evaluation of candidate baits for oral delivery of BCG vaccine to European badgers, Meles meles. Vaccine, 2017, 35, 4402-4407.	3.8	12
66	CMR <scp>net</scp> : An <scp>r</scp> package to derive networks of social interactions and movement from mark–recapture data. Methods in Ecology and Evolution, 2021, 12, 70-75.	5.2	12
67	Absence of Antibodies Against Canine Distemper Virus in Free-ranging Populations of the Eurasian Badger in Great Britain. Journal of Wildlife Diseases, 2000, 36, 576-579.	0.8	11
68	Options for the management of bovine tuberculosis transmission from badgers (Meles meles) to cattle: evidence from a long-term study. Mammal Study, 2005, 30, S73-S81.	0.6	11
69	Evaluating seasonal bait delivery to badgers using rhodamine B. European Journal of Wildlife Research, 2011, 57, 35-43.	1.4	11
70	A study of fox (Vulpes vulpes) visits to farm buildings in Southwest England and the implications for disease management. European Journal of Wildlife Research, 2011, 57, 1227-1230.	1.4	11
71	High prevalence of trypanosomes in European badgers detected using ITS-PCR. Parasites and Vectors, 2015, 8, 480.	2.5	9
72	Exposure of nontarget wildlife to candidate TB vaccine baits deployed for European badgers. European Journal of Wildlife Research, 2015, 61, 263-269.	1.4	9

#	Article	IF	CITATIONS
73	Genetic evidence further elucidates the history and extent of badger introductions from Great Britain into Ireland. Royal Society Open Science, 2020, 7, 200288.	2.4	9
74	Characterization of potential superspreader farms for bovine tuberculosis: A review. Veterinary Medicine and Science, 2021, 7, 310-321.	1.6	9
75	Bait uptake by wild badgers and its implications for oral vaccination against tuberculosis. PLoS ONE, 2018, 13, e0206136.	2.5	8
76	Badger vaccination in England: Progress, operational effectiveness and participant motivations. People and Nature, 2020, 2, 761-775.	3.7	8
77	CESTODIASIS IN THE RED GROUSE IN SCOTLAND. Journal of Wildlife Diseases, 1999, 35, 250-258.	0.8	7
78	Assessing spatiotemporal associations in the occurrence of badger–human conflict in England. European Journal of Wildlife Research, 2011, 57, 67-76.	1.4	7
79	No energetic cost of tuberculosis infection in European badgers (<i>Meles meles</i>). Journal of Animal Ecology, 2019, 88, 1973-1985.	2.8	7
80	Zoo and Wildlife Medical Education: A European Perspective. Journal of Veterinary Medical Education, 2006, 33, 401-407.	0.6	6
81	Deterrent or dinner bell? Alteration of badger activity and feeding at baited plots using ultrasonic and water jet devices. Applied Animal Behaviour Science, 2008, 115, 221-232.	1.9	6
82	Mycobacterium bovis infection in badger cubs: Re-assessing the evidence for maternally derived immunological protection from advanced disease. Veterinary Immunology and Immunopathology, 2012, 148, 326-330.	1.2	6
83	Group size correlates with territory size in European badgers: implications for the resource dispersion hypothesis?. Oikos, 2015, 124, 507-514.	2.7	5
84	Modeling as a Decision Support Tool for Bovine TB Control Programs in Wildlife. Frontiers in Veterinary Science, 2018, 5, 276.	2.2	5
85	Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain. Preventive Veterinary Medicine, 2021, 194, 105443.	1.9	5
86	Analysis of Lifetime Mortality Trajectories in Wildlife Disease Research: BaSTA and Beyond. Diversity, 2019, 11, 182.	1.7	4
87	Uptake of buried baits by badgers: Implications for rabies control in Great Britain and the delivery of an oral TB vaccine. Wildlife Society Bulletin, 2012, 36, 220-225.	1.6	3
88	Predicting badger visits to farm yards and making predictions available to farmers. PLoS ONE, 2019, 14, e0216953.	2.5	3
89	Individual variation and the source-sink group dynamics of extra-group paternity in a social mammal. Behavioral Ecology, 2019, 30, 301-312.	2.2	3
90	Genetic, social and maternal contributions to <i>Mycobacterium bovis</i> infection status in European badgers (<i>Meles meles</i>). Journal of Evolutionary Biology, 2021, 34, 695-709.	1.7	3

#	Article	lF	CITATIONS
91	Investigation into the genetic diversity in toll-like receptors 2 and 4 in the European badger Meles meles. Research in Veterinary Science, 2018, 119, 228-231.	1.9	2
92	Serologic responses correlate with current but not future bacterial shedding in badgers naturally infected with Mycobacterium bovis. Transboundary and Emerging Diseases, 2021, , .	3.0	2
93	Exclusions for resolving urban badger damage problems: outcomes and consequences. PeerJ, 2016, 4, e2579.	2.0	2
94	Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations. Scientific Reports, 2020, 10, 21980.	3.3	2
95	Control of bovine tuberculosis in New Zealand in the face of a wildlife host: a compiled review of 50 years of programme policy, design and research. New Zealand Veterinary Journal, 2015, 63, 2-3.	0.9	1
96	A novel approach for trap-side restraint and blood sampling in European badgers. European Journal of Wildlife Research, 2021, 67, 1.	1.4	1
97	Badgers with bovine TB. Veterinary Record, 2018, 182, 721-721.	0.3	O
98	Estimating wildlife vaccination coverage using genetic methods. Preventive Veterinary Medicine, 2020, 183, 105096.	1.9	0
99	Uptake of baits by wild badgers: Influences of deployment method, badger age and activity patterns on potential delivery of an oral vaccine. Preventive Veterinary Medicine, 2022, 206, 105702.	1.9	0