Alexander M Binshtok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4129353/publications.pdf

Version: 2024-02-01

33 papers 2,952 citations

331670 21 h-index 32 g-index

35 all docs 35 docs citations

35 times ranked 3684 citing authors

#	Article	IF	CITATIONS
1	Nociceptors Are Interleukin-1Î ² Sensors. Journal of Neuroscience, 2008, 28, 14062-14073.	3.6	533
2	GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nature Medicine, 2006, 12, 1269-1277.	30.7	504
3	Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature, 2007, 449, 607-610.	27.8	404
4	BACE1 regulates voltage-gated sodium channels and neuronal activity. Nature Cell Biology, 2007, 9, 755-764.	10.3	274
5	Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nature Neuroscience, 2013, 16, 910-918.	14.8	133
6	Voltage-gated sodium channels in pain states: Role in pathophysiology and targets for treatment. Brain Research Reviews, 2009, 60, 65-83.	9.0	130
7	Functionally Distinct NMDA Receptors Mediate Horizontal Connectivity within Layer 4 of Mouse Barrel Cortex. Neuron, 1998, 21, 1055-1065.	8.1	112
8	Coapplication of Lidocaine and the Permanently Charged Sodium Channel Blocker QX-314 Produces a Long-lasting Nociceptive Blockade in Rodents. Anesthesiology, 2009, 111, 127-137.	2.5	103
9	Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314. Journal of Neurophysiology, 2013, 109, 1704-1712.	1.8	85
10	The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability. Journal of Neurophysiology, 2015, 113, 601-619.	1.8	83
11	NMDA Receptors in Layer 4 Spiny Stellate Cells of the Mouse Barrel Cortex Contain the NR2C Subunit. Journal of Neuroscience, 2006, 26, 708-715.	3.6	81
12	Capsaicin Combined with Local Anesthetics Preferentially Prolongs Sensory/Nociceptive Block in Rat Sciatic Nerve. Anesthesiology, 2008, 109, 872-878.	2.5	60
13	Selectively targeting pain in the trigeminal system. Pain, 2010, 150, 29-40.	4.2	51
14	Expression of TRPV1 Channels after Nerve Injury Provides an Essential Delivery Tool for Neuropathic Pain Attenuation. PLoS ONE, 2012, 7, e44023.	2.5	36
15	Quaternary Lidocaine Derivative QX-314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium Channels and Cytotoxicity. Anesthesiology, 2016, 124, 1153-1165.	2.5	35
16	Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2868-2880.	4.1	33
17	Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPV1 and TRPA1. Cell Calcium, 2017, 68, 34-44.	2.4	30
18	Location and Plasticity of the Sodium Spike Initiation Zone in Nociceptive Terminals InÂVivo. Neuron, 2019, 102, 801-812.e5.	8.1	30

#	Article	IF	CITATIONS
19	Platelet-derived growth factor activates nociceptive neurons by inhibiting M-current and contributes to inflammatory pain. Pain, 2019, 160, 1281-1296.	4.2	28
20	K _V 7/M channels as targets for lipopolysaccharideâ€induced inflammatory neuronal hyperexcitability. Journal of Physiology, 2017, 595, 713-738.	2.9	25
21	Chronic pain-related remodeling of cerebral cortex – †pain memory': a possible target for treatment of chronic pain. Pain Management, 2013, 3, 35-45.	1.5	23
22	Multispectral labeling technique to map many neighboring axonal projections in the same tissue. Nature Methods, 2015, 12, 547-552.	19.0	23
23	The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors. Frontiers in Molecular Neuroscience, 2017, 10, 181.	2.9	23
24	Mechanisms of Nociceptive Transduction and Transmission: A Machinery for Pain Sensation and Tools for Selective Analgesia. International Review of Neurobiology, 2011, 97, 143-177.	2.0	22
25	2-APB and CBD-Mediated Targeting of Charged Cytotoxic Compounds Into Tumor Cells Suggests the Involvement of TRPV2 Channels. Frontiers in Pharmacology, 2019, 10, 1198.	3.5	22
26	The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. Journal of Neuroscience, 2020, 40, 9346-9363.	3.6	20
27	Teriparatide attenuates scarring around murine cranial bone allograft via modulation of angiogenesis. Bone, 2017, 97, 192-200.	2.9	15
28	Abnormal Reinnervation of Denervated Areas Following Nerve Injury Facilitates Neuropathic Pain. Cells, 2020, 9, 1007.	4.1	9
29	Photopharmacological modulation of native CRAC channels using azoboronate photoswitches. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118160119.	7.1	7
30	Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals <i>in vitro</i> . Journal of Biomedical Optics, 2017, 22, 076010.	2.6	6
31	mTORC2 mediates structural plasticity in distal nociceptive endings that contributes to pain hypersensitivity following inflammation. Journal of Clinical Investigation, 2022, 132, .	8.2	6
32	Optical Assessment of Nociceptive TRP Channel Function at the Peripheral Nerve Terminal. International Journal of Molecular Sciences, 2021, 22, 481.	4.1	5
33	InÂvivo optical recordings of ion dynamics in mouse corneal primary nociceptive terminals. STAR Protocols, 2022, 3, 101224.	1.2	0