Fumio Takei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4129201/publications.pdf

Version: 2024-02-01

103 6,677 41 79
papers citations h-index g-index

104 104 104 104 6384

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Tissue Resident and Migratory Group 2 Innate Lymphoid Cells. Frontiers in Immunology, 2022, 13, 877005.	4.8	11
2	The Fate of Activated Group 2 Innate Lymphoid Cells. Frontiers in Immunology, 2021, 12, 671966.	4.8	15
3	Innate lymphoid cell development. Journal of Allergy and Clinical Immunology, 2021, 147, 1549-1560.	2.9	21
4	Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Frontiers in Immunology, 2021, 12, 679509.	4.8	11
5	Abortive γÎTCR rearrangements suggest ILC2s are derived from T-cell precursors. Blood Advances, 2020, 4, 5362-5372.	5.2	29
6	Single-cell analysis of ROR \hat{l} ± tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. Journal of Experimental Medicine, 2020, 217, .	8.5	74
7	Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight, 2020, 5, .	5.0	33
8	The Transcription Factor RORα Preserves ILC3 Lineage Identity and Function during Chronic Intestinal Infection. Journal of Immunology, 2019, 203, 3209-3215.	0.8	27
9	Identification of Group 2 Innate Lymphoid Cells in Mouse Lung, Liver, Small Intestine, Bone Marrow, and Mediastinal and Mesenteric Lymph Nodes. Current Protocols in Immunology, 2019, 125, e73.	3.6	12
10	Female and male mouse lung group 2 innate lymphoid cells differ in gene expression profiles and cytokine production. PLoS ONE, 2019, 14, e0214286.	2.5	22
11	<scp>ILC</scp> 2 memory: Recollection of previous activation. Immunological Reviews, 2018, 283, 41-53.	6.0	32
12	Type 2 Innate Lymphocytes Actuate Immunity Against Tumours and Limit Cancer Metastasis. Scientific Reports, 2018, 8, 2924.	3.3	84
13	Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 141, 300-310.e11.	2.9	182
14	Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. Journal of Allergy and Clinical Immunology, 2017, 140, 593-595.e3.	2.9	67
15	Immunological Memory of Group 2 Innate Lymphoid Cells. Trends in Immunology, 2017, 38, 423-431.	6.8	34
16	Development of Group 2 Innate Lymphoid Cells. , 2016, , 149-155.		1
17	Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation. Immunity, 2016, 45, 198-208.	14.3	223
18	Common-Lymphoid-Progenitor-Independent Pathways of Innate and T Lymphocyte Development. Cell Reports, 2016, 15, 471-480.	6.4	53

#	Article	IF	Citations
19	UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells. Blood, 2016, 127, 2575-2586.	1.4	28
20	G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program. Journal of Experimental Medicine, 2016, 213, 1153-1162.	8.5	32
21	Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends in Immunology, 2015, 36, 189-195.	6.8	143
22	A NK complexâ€linked locus restricts the spread of herpes simplex virus type 1 in the brains of C57BL/6 mice. Immunology and Cell Biology, 2015, 93, 877-884.	2.3	16
23	Group 2 Innate Lymphoid Cells Are Critical for the Initiation of Adaptive T Helper 2 Cell-Mediated Allergic Lung Inflammation. Immunity, 2014, 40, 425-435.	14.3	803
24	Isolation and Characterization of Mouse Innate Lymphoid Cells. Current Protocols in Immunology, 2014, 106, 3.25.1-3.25.13.	3.6	29
25	Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. Journal of Allergy and Clinical Immunology, 2014, 133, 1142-1148.e5.	2.9	193
26	Retinoic-Acid-Receptor-Related Orphan Nuclear Receptor Alpha Is Required for Natural Helper Cell Development and Allergic Inflammation. Immunity, 2012, 37, 463-474.	14.3	339
27	Lung Natural Helper Cells Are a Critical Source of Th2 Cell-Type Cytokines in Protease Allergen-Induced Airway Inflammation. Immunity, 2012, 36, 451-463.	14.3	723
28	Lymphoid progenitors in normal mouse lymph nodes develop into NK cells and T cells inÂvitro and inÂvivo. Experimental Hematology, 2012, 40, 401-406.	0.4	5
29	Unique progenitors in mouse lymph node develop into CD127+ NK cells: thymus-dependent and thymus-independent pathways. Blood, 2011, 117, 4012-4021.	1.4	26
30	LAK cell therapy of AML: Not to be lost in translation. Experimental Hematology, 2011, 39, 1045-1046.	0.4	6
31	Redundancy in the immune system restricts the spread of HSV-1 in the central nervous system (CNS) of C57BL/6 mice. Virology, 2010, 400, 248-258.	2.4	31
32	Elucidation of the integrin LFA-1–mediated signaling pathway of actin polarization in natural killer cells. Blood, 2010, 116, 1272-1279.	1.4	64
33	An Accessory Role for B Cells in the IL-12-Induced Activation of Resting Mouse NK Cells. Journal of Immunology, 2009, 183, 3608-3615.	0.8	8
34	A Dual Role for Talin in NK Cell Cytotoxicity: Activation of LFA-1-Mediated Cell Adhesion and Polarization of NK Cells. Journal of Immunology, 2009, 182, 948-956.	0.8	58
35	Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Research, 2009, 37, 5331-5342.	14.5	19
36	Bâ€cell coâ€receptor CD72 is expressed on NK cells and inhibits IFNâ€Î³ production but not cytotoxicity. European Journal of Immunology, 2009, 39, 826-832.	2.9	19

#	Article	IF	CITATIONS
37	Unique subset of natural killer cells develops from progenitors in lymph node. Blood, 2008, 111, 4201-4208.	1.4	27
38	LFA-1 Binding to Ligand Induces Talin-Mediated Reorganization of the Actin Cytoskeleton in Cytotoxic T Cells~!2008-07-24~!2008-11-14~!2008-12-05~!. The Open Immunology Journal, 2008, 1, 51-61.	1.5	2
39	A Novel B220+ NK Cell Progenitor Found in the Murine Lung with Potent in Vitro NK Potential Gives Rise to Mature NK Cells with Distinct NK Cell-Surface Receptor Expression. Blood, 2008, 112, 4779-4779.	1.4	5
40	Comprehensive Profiling of Micrornas in Murine Hematopoietic Stem Cells and Lineages Using a Microfluidics Approach. Blood, 2008, 112, 2468-2468.	1.4	1
41	Activation of LFA-1 by ionomycin is independent of calpain-mediated talin cleavage. Biochemical and Biophysical Research Communications, 2007, 356, 207-212.	2.1	10
42	Plasticity of Ly49g expression is due to epigenetics. Molecular Immunology, 2007, 44, 821-826.	2.2	11
43	Expression of murine killer immunoglobulin-like receptor KIRL1 on CD1d-independent NK1.1+ T cells. Immunogenetics, 2007, 59, 641-651.	2.4	5
44	Characterization of Developmental Pathway of Natural Killer Cells from Embryonic Stem Cells In Vitro. PLoS ONE, 2007, 2, e232.	2.5	12
45	Expression of rearranged TCR \hat{l}^3 genes in natural killer cells suggests a minor thymus-dependent pathway of lineage commitment. Blood, 2006, 107, 2673-2679.	1.4	47
46	A Role for DNA Hypomethylation and Histone Acetylation in Maintaining Allele-Specific Expression of Mouse NKG2A in Developing and Mature NK Cells. Journal of Immunology, 2006, 177, 414-421.	0.8	14
47	Evidence for Epigenetic Maintenance of <i>Ly49a</i> Monoallelic Gene Expression. Journal of Immunology, 2006, 176, 2991-2999.	0.8	37
48	Murine CD160, Ig-Like Receptor on NK Cells and NKT Cells, Recognizes Classical and Nonclassical MHC Class I and Regulates NK Cell Activation. Journal of Immunology, 2005, 175, 4426-4432.	0.8	89
49	Lipid Rafts Mediate Association of LFA-1 and CD3 and Formation of the Immunological Synapse of CTL. Journal of Immunology, 2004, 173, 2960-2967.	0.8	31
50	The Rap GTPases Regulate Integrin-mediated Adhesion, Cell Spreading, Actin Polymerization, and Pyk2 Tyrosine Phosphorylation in B Lymphocytes. Journal of Biological Chemistry, 2004, 279, 12009-12019.	3.4	125
51	CD1d-Independent NKT Cells in \hat{I}^2 2-Microglobulin-Deficient Mice Have Hybrid Phenotype and Function of NK and T Cells. Journal of Immunology, 2004, 172, 6115-6122.	0.8	32
52	Transcriptional Control of Murine <i>CD94 </i> Gene: Differential Usage of Dual Promoters by Lymphoid Cell Types. Journal of Immunology, 2003, 171, 4219-4226.	0.8	24
53	Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood, 2003, 102, 215-222.	1.4	103
54	Acquisition of MHC-Specific Receptors on Murine Natural Killer Cells. Critical Reviews in Immunology, 2003, 23, 251-266.	0.5	21

#	Article	IF	Citations
55	Slow receptor acquisition by NK cells regenerated in vivo from transplanted fetal liver or adult bone marrow stem cells. Experimental Hematology, 2003, 31, 1015-8.	0.4	1
56	Orderly and Nonstochastic Acquisition of CD94/NKG2 Receptors by Developing NK Cells Derived from Embryonic Stem Cells In Vitro. Journal of Immunology, 2002, 168, 4980-4987.	0.8	42
57	Functional analysis of 5? and 3? regions of the closely related Ly49c and j genes. Immunogenetics, 2001, 52, 212-223.	2.4	19
58	Comparative analysis of the promoter regions and transcriptional start sites of mouse Ly49 genes. Immunogenetics, 2001, 53, 215-224.	2.4	24
59	Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunological Reviews, 2001, 181, 90-103.	6.0	64
60	Regulation of NKT Cells by Ly49: Analysis of Primary NKT Cells and Generation of NKT Cell Line. Journal of Immunology, 2001, 167, 4180-4186.	0.8	52
61	The non-classical MHC class I molecule Qa-1b inhibits classical MHC class I-restricted cytotoxicity of cytotoxic T lymphocytes. International Immunology, 2001, 13, 321-327.	4.0	21
62	Clonal analysis of NK cell development from bone marrow progenitorsin vitro: orderly acquisition of receptor gene expression. European Journal of Immunology, 2000, 30, 2074-2082.	2.9	79
63	The genomic organization of the mouse CD94 C-type lectin gene. International Journal of Immunogenetics, 2000, 27, 149-151.	1.2	7
64	Inhibition of NK Cells by Murine CMV-Encoded Class I MHC Homologue m144. Cellular Immunology, 1999, 191, 145-151.	3.0	42
65	Expression analysis of new Ly49 genes: most transcripts of Ly49j lack the transmembrane domain. Immunogenetics, 1999, 49, 685-691.	2.4	29
66	Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells. European Journal of Immunology, 1999, 29, 755-761.	2.9	52
67	Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells. European Journal of Immunology, 1999, 29, 755-761.	2.9	6
68	Localization of five new Ly49 genes, including three closely related to Ly49c. Immunogenetics, 1998, 48, 174-183.	2.4	75
69	Induction of sensitivity to NK-mediated cytotoxicity by TNF- $\hat{l}\pm$ treatment: possible role of ICAM-3 and CD44. Leukemia, 1998, 12, 1565-1572.	7.2	25
70	The NK2.1 receptor is encoded by Ly-49C and its expression is regulated by MHC class I alleles. International Immunology, 1997, 9, 533-540.	4.0	27
71	The Role of LFA-1 (CD11a/CD18) Cytoplasmic Domains in Binding to Intercellular Adhesion Molecule-1 (CD54) and in Postreceptor Cell Spreading. Experimental Cell Research, 1997, 233, 78-87.	2.6	11
72	The Ly-49 family: genes, proteins and recognition of class I MHC. Immunological Reviews, 1997, 155, 67-77.	6.0	169

#	Article	IF	CITATIONS
73	ICAMâ€⊋ Provides a Costimulatory Signal for T Cell Stimulation by Allogeneic Class II MHC. Scandinavian Journal of Immunology, 1997, 45, 248-254.	2.7	12
74	New insights into the regulation of ICAM-1 gene expression. Leukemia and Lymphoma, 1996, 20, 223-228.	1.3	23
75	Cross-linking the murine heat-stable antigen induces apoptosis in B cell precursors and suppresses the anti-CD40-induced proliferation of mature resting B lymphocytes Journal of Experimental Medicine, 1996, 184, 1639-1649.	8.5	47
76	Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions Journal of Experimental Medicine, 1996, 183, 1553-1559.	8.5	99
77	Heterogeneity Among Ly-49C Natural Killer (NK) Cells: Characterization of Highly Related Receptors with Differing Functions and Expression Patterns. Journal of Experimental Medicine, 1996, 184, 2085-2090.	8.5	108
78	Role of the intercellular adhesion molecule-1(ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice Journal of Clinical Investigation, 1996, 97, 2362-2369.	8.2	193
79	Regulation of ICAM-1 mRNA stability by cycloheximide: Role of serine/threonine phosphorylation and protein synthesis. Journal of Cellular Biochemistry, 1995, 59, 202-213.	2.6	23
80	Low ICAM-1 expression in the epidermis of depigmenting C57BL/6J-mivit/mivit mice: A possible cause of muted contact sensitization. Experimental Dermatology, 1995, 4, 20-29.	2.9	11
81	Carbohydrate Recognition by a Natural Killer Cell Receptor, Ly-49C. Journal of Biological Chemistry, 1995, 270, 9691-9694.	3.4	67
82	Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties Journal of Experimental Medicine, 1994, 180, 2287-2295.	8.5	164
83	Defective development of thymocytes overexpressing the costimulatory molecule, heat-stable antigen Journal of Experimental Medicine, 1994, 179, 177-184.	8.5	48
84	Monoclonal antibody to MALA-2 (ICAM-1) reduces acute autoimmune nephritis in kdkd mice. Clinical Immunology and Immunopathology, 1992, 64, 129-134.	2.0	32
85	Adhesion molecules on murine brain microvascular endothelial cells: expression and regulation of ICAM-1 and Lgp 55. Journal of Neuroimmunology, 1992, 36, 1-11.	2.3	158
86	REDUCTION IN THE SEVERITY OF GRAFT-VERSUS-HOST DISEASE AND INCREASED SURVIVAL IN ALLOGENEIC MICE BY TREATMENT WITH MONOCLONAL ANTIBODIES TO CELL ADHESION ANTIGENS LFA- $\hat{\Pi}_{\pm}$ AND MALA-2. Transplantation, 1991, 52, 842-845.	1.0	56
87	Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. European Journal of Immunology, 1991, 21, 1171-1180.	2.9	126
88	Late administration of monoclonal antibody to leukocyte function-antigen 1 abrogates incipient murine cerebral malaria. European Journal of Immunology, 1991, 21, 2265-2267.	2.9	126
89	Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligodendrocytes and astrocytes. Journal of Neuroscience Research, 1991, 29, 1-12.	2.9	56
90	Differing regulation and function of ICAM-1 and class II antigens on renal tubular cells. Kidney International, 1990, 38, 417-425.	5.2	114

#	Article	IF	Citations
91	Mesangial cell accessory functions: Mediation by intercellular adhesion molecule-1. Kidney International, 1990, 38, 1039-1046.	5.2	86
92	MALA-2, mouse homologue of human adhesion molecule ICAM-1 (CD54). European Journal of Immunology, 1989, 19, 1551-1557.	2.9	101
93	Expression of an Acute Myelogenous Leukemia-Associated Antigen (NHL-30.5) on Immature Leukemic Cells. , 1986, , 315-326.		1
94	Monoclonal Antibody-Defined Cell Surface Molecules Regulate Lymphocyte Activation., 1986,, 519-526.		0
95	NHL-30.5: A monoclonal antibody reactive with an acute myeloid leukemia (AML)-associated antigen. Leukemia Research, 1985, 9, 135-145.	0.8	14
96	Localisation of metastatic carcinoma by a radiolabelled monoclonal antibody. British Journal of Cancer, 1983, 47, 253-259.	6.4	72
97	Immunohistochemical techniques in the early screening of monoclonal antibodies to human colonic epithelium. British Journal of Cancer, 1982, 46, 9-17.	6.4	38
98	Biochemical characterization of H9/25, an allospecificity encoded by the Ly-6 region. Immunogenetics, $1982, 16, 201-208$.	2.4	19
99	Ly-6 region regulates expression of multiple allospecificities. Immunogenetics, 1981, 13, 435-441.	2.4	10
100	H9/25 monoclonal antibody recognizes a new allospecificity of mouse lymphocyte subpopulations: Strain and tissue distribution. European Journal of Immunology, 1980, 10, 241-246.	2.9	36
101	Monoclonal antibody H 9/25 reacts with functional subsets of T and B cells: killer, killer precursor and plaque-forming cells. European Journal of Immunology, 1980, 10, 503-509.	2.9	19
102	Effect of adult thymectomy on tumour immunity in mice. British Journal of Cancer, 1978, 37, 723-731.	6.4	4
103	Single-cell analysis of RORÎ \pm tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. Journal of Experimental Medicine, 0, , .	8.5	0