Jianfeng Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128836/publications.pdf

Version: 2024-02-01

250 250 250 13985
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Facile preparation of porous hollow Co Mn3-O4 normal-reverse coexisted spinel for toluene oxidation. Journal of Alloys and Compounds, 2022, 892, 162185.	5.5	11
2	Structure reorganization of cellulose hydrogel by green solvent exchange for potential plastic replacement. Carbohydrate Polymers, 2022, 275, 118695.	10.2	34
3	Inlaying metal-organic framework derived pancake-like TiO2 into three-dimensional BiOI for visible-light-driven generation of vanillin from sodium lignosulfonate. Journal of Colloid and Interface Science, 2022, 605, 648-656.	9.4	20
4	Amino-functionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline. Journal of Colloid and Interface Science, 2022, 607, 933-941.	9.4	54
5	Bimetallic Ni–Co nanoparticles confined within nitrogen defective carbon nitride nanotubes for enhanced photocatalytic hydrogen production. Environmental Research, 2022, 203, 111844.	7.5	19
6	Metal organic framework enabled wood evaporator for solar-driven water purification. Separation and Purification Technology, 2022, 281, 119912.	7.9	48
7	Metal-organic framework promoting high-solids enzymatic hydrolysis of untreated corncob residues. Bioresource Technology, 2022, 344, 126163.	9.6	14
8	Cellulose tailored semiconductors for advanced photocatalysis. Renewable and Sustainable Energy Reviews, 2022, 154, 111820.	16.4	37
9	Geometry-tunable sulfur-doped carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation. Chemical Engineering Journal, 2022, 431, 133412.	12.7	28
10	Self-assembly of ZnIn2S4 nanosheets on g-C3N4 nanotubes for efficient photocatalytic reduction of Cr(VI). Microporous and Mesoporous Materials, 2022, 330, 111598.	4.4	15
11	Electric current-assisted synthesis of ZIF-8 with stoichiometric metal and ligand precursors for CO2 adsorption. Journal of Physics and Chemistry of Solids, 2022, 161, 110485.	4.0	5
12	Integration of thermoresponsive MIL-121 into alginate beads for efficient heavy metal ion removal. Journal of Cleaner Production, 2022, 333, 130229.	9.3	34
13	Photocatalytic Oxidation of 5â€Hydroxymethylfurfural Over Interfacialâ€Enhanced Ag/TiO ₂ Under Visible Light Irradiation. ChemSusChem, 2022, 15, e202102158.	6.8	16
14	Integration of natural clay into cellulose membrane for efficient CO2/N2 separation. Cellulose, 2022, 29, 1873-1881.	4.9	6
15	ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Separation and Purification Technology, 2022, 285, 120359.	7.9	23
16	Deep eutectic solvent with bifunctional BrÃ, nsted-Lewis acids for highly efficient lignocellulose fractionation. Bioresource Technology, 2022, 347, 126723.	9.6	42
17	Cr-metal-organic framework coordination with Znln2S4 nanosheets for photocatalytic reduction of Cr(VI). Journal of Cleaner Production, 2022, 341, 130891.	9.3	37
18	Self-Induced Oxygen Vacancies on Carboxyl-Rich MIL-121 Enable Efficient Activation and Oxidation of Benzyl Alcohol under Visible Light. ACS Applied Materials & Interfaces, 2022, 14, 11509-11516.	8.0	10

#	Article	IF	CITATIONS
19	Aminosilane-modified wood sponge for efficient CO2 capture. Wood Science and Technology, 2022, 56, 691-702.	3.2	4
20	Celluloseâ€Derived Carbon Dotâ€Guided Growth of ZnIn ₂ S ₄ Nanosheets for Photocatalytic Oxidation of 5â€Hydroxymethylfurfural into 2,5â€Diformylfuran. ChemSusChem, 2022, 15, .	6.8	23
21	Towards high-performance supercapacitors with cellulose-based carbon for zinc-ion storage. Journal of Energy Storage, 2022, 50, 104252.	8.1	8
22	Synthesis of MoS2 nanotube using a sacrificial template method as advanced anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 907, 164499.	5.5	11
23	Metal ion-assisted conversion of Co-ZIF-L to CoNi-layered double hydroxides with high electrochemical properties for supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 383-390.	9.4	10
24	Tunable Z-scheme and Type II heterojunction of CuxO nanoparticles on carbon nitride nanotubes for enhanced visible-light ammonia synthesis. Chemical Engineering Journal, 2022, 442, 136156.	12.7	29
25	Delignified wood filter functionalized with metal-organic frameworks for high-efficiency air filtration. Separation and Purification Technology, 2022, 293, 121095.	7.9	15
26	Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine. Renewable Energy, 2022, 195, 681-687.	8.9	18
27	Lignocellulose hydrogels fabricated from corncob residues through a green solvent system. International Journal of Biological Macromolecules, 2022, 217, 428-434.	7.5	4
28	Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coordination Chemistry Reviews, 2022, 470, 214699.	18.8	31
29	Surfactant-promoted hydrolysis of lignocellulose for ethanol production. Fuel Processing Technology, 2021, 213, 106660.	7.2	42
30	Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. Coordination Chemistry Reviews, 2021, 431, 213677.	18.8	41
31	Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation. Journal of Hazardous Materials, 2021, 408, 124458.	12.4	50
32	Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. Journal of Physics and Chemistry of Solids, 2021, 150, 109839.	4.0	60
33	Molten salt synthesis of capacitive porous carbon from Allium cepa (onion) for supercapacitor application. Journal of Electroanalytical Chemistry, 2021, 881, 114972.	3.8	16
34	Advances in cellulose-metal organic framework composites: preparation and applications. Journal of Materials Chemistry A, 2021, 9, 23353-23363.	10.3	49
35	Writing ink-promoted synthesis of electrodes with high energy storage performance: A review. Journal of Energy Chemistry, 2021, 53, 433-440.	12.9	11
36	Direct Coating Pen Ink Carbon on a Carbonized Melamine Sponge as a Flexible Free-Standing Electrode. Industrial & Engineering Chemistry Research, 2021, 60, 3597-3604.	3.7	10

#	Article	IF	Citations
37	Metal Organic Framework-Based CoNi Composites on Carbonized Wood as Advanced Freestanding Electrodes for Supercapacitors. Energy & Electrodes for Supercapacitors. Energy & Electrodes for Supercapacitors.	5.1	14
38	Melamine vapor-derived synthesis of UiO-66@ultrathin carbon nitride layer as high-performance photocatalysts. Materials Letters, 2021, 286, 129260.	2.6	2
39	Flexible cellulose foams with a high loading of attapulgite nanorods for Cu2+ ions removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126038.	4.7	13
40	Photocatalytic conversion of sodium lignosulfonate into vanillin using mesoporous TiO2 derived from MIL-125. Microporous and Mesoporous Materials, 2021, 319, 111043.	4.4	18
41	Photocatalytic depolymerization of organosolv lignin into valuable chemicals. International Journal of Biological Macromolecules, 2021, 180, 403-410.	7.5	33
42	Graphitic Carbon Nitride–Graphene Oxide Hybrid Membranes for Hydrogen Purification. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 9189-9195.	3.7	11
43	Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination, 2021, 507, 115024.	8.2	97
44	In situ growth of ZIF-8 within wood channels for water pollutants removal. Separation and Purification Technology, 2021, 266, 118527.	7.9	51
45	Construction of two-dimensional BiOI on carboxyl-rich MIL-121 for visible-light photocatalytic degradation of tetracycline. Journal of Alloys and Compounds, 2021, 872, 159711.	5.5	34
46	Fine tuning of CdxZn1-xS for photo-depolymerization of alkaline lignin into vanillin. International Journal of Biological Macromolecules, 2021, 185, 297-305.	7.5	29
47	Constructing MoO3@MoO2 heterojunction on g-C3N4 nanosheets with advanced Li-ion storage ability. Journal of Alloys and Compounds, 2021, 875, 160077.	5.5	21
48	Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices. Carbon, 2021, 182, 404-412.	10.3	29
49	In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohydrate Polymers, 2021, 270, 118376.	10.2	58
50	Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO ₂ chemical fixation. New Journal of Chemistry, 2021, 45, 4147-4151.	2.8	3
51	Self-chargeable zinc-ion hybrid supercapacitor driven by salt-concentrated cellulose hydrogel. Cellulose, 2021, 28, 11483-11492.	4.9	9
52	Study on Optimal Conditions of Oxidative Desulfurization over Hierarchical CoAPO-5 Catalysts Using Response Surface Method. Russian Journal of Applied Chemistry, 2021, 94, 1313-1323.	0.5	0
53	Optimizing the mobility of active species in ionic liquid/MIL-101 composites for boosting carbon dioxide conversion. New Journal of Chemistry, 2021, 46, 44-48.	2.8	5
54	N-Doped Porous Carbon Supported Au Nanoparticles for Benzyl Alcohol Oxidation. Catalysis Letters, 2020, 150, 74-81.	2.6	11

#	Article	IF	Citations
55	Zeolitic-imidazolate-framework filled hierarchical porous nanofiber membrane for air cleaning. Journal of Membrane Science, 2020, 594, 117467.	8.2	61
56	In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. Journal of Membrane Science, 2020, 595, 117579.	8.2	87
57	PEGylated deep eutectic solvent-assisted synthesis of CdS@CeO2 composites with enhanced visible light photocatalytic ability. Chemical Engineering Journal, 2020, 383, 123135.	12.7	47
58	Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants. Chemosphere, 2020, 242, 125197.	8.2	22
59	Flexible Co-ZIF-L@melamine sponge with underwater superoleophobicity for water/oil separation. Materials Chemistry and Physics, 2020, 241, 122385.	4.0	30
60	Fabrication of TiO2 embedded Znln2S4 nanosheets for efficient Cr(VI) reduction. Materials Research Bulletin, 2020, 122, 110671.	5.2	41
61	Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. International Journal of Biological Macromolecules, 2020, 145, 663-667.	7.5	60
62	Rational design of interlaced Co9S8/carbon composites from ZIF-67/cellulose nanofibers for enhanced lithium storage. Journal of Alloys and Compounds, 2020, 818, 152911.	5.5	33
63	Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. International Journal of Biological Macromolecules, 2020, 143, 922-927.	7.5	26
64	Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(VI) reduction. Journal of Hazardous Materials, 2020, 389, 121858.	12.4	107
65	Molten salt synthesis of hierarchical porous carbon from wood sawdust for supercapacitors. Journal of Electroanalytical Chemistry, 2020, 856, 113673.	3.8	32
66	Construction of sandwich-type Co9S8-C anchored on carbonized melamine foam toward lithium-ion battery. Electrochimica Acta, 2020, 363, 137220.	5.2	15
67	Chinese ink enabled wood evaporator for continuous water desalination. Desalination, 2020, 496, 114727.	8.2	62
68	Metalâ€lon Induced Surface Modification for Durable Hydrophobic Wood. Advanced Materials Interfaces, 2020, 7, 2001166.	3.7	16
69	Cellulose/TiO ₂ -Based Carbonaceous Composite Film and Aerogel for Highly Efficient Photocatalysis under Visible Light. Industrial & Engineering Chemistry Research, 2020, 59, 13997-14003.	3.7	28
70	Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. Journal of Materials Chemistry A, 2020, 8, 25626-25648.	10.3	66
71	Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. Journal of Materials Chemistry A, 2020, 8, 12314-12318.	10.3	87
72	Embedding Co9S8 nanoparticles into porous carbon foam with high flexibility and enhanced lithium ion storage. Journal of Electroanalytical Chemistry, 2020, 863, 114062.	3.8	21

#	Article	IF	Citations
73	Cellulose Hydrogels by Reversible Ionâ€Exchange as Flexible Pressure Sensors. Advanced Materials Technologies, 2020, 5, 2000358.	5.8	25
74	Efficient conversion of methane into power via microchanneled solid oxide fuel cells. Journal of Power Sources, 2020, 453, 227848.	7.8	11
75	One-pot fabrication of CdxZn1-xS/ZnO nanohybrid using mixed sulfur sources for photocatalysis. Materials Research Bulletin, 2020, 125, 110776.	5.2	18
76	Free-standing porous carbon foam as the ultralight and flexible supercapacitor electrode. Carbon, 2020, 161, 224-230.	10.3	57
77	Zirconium ion modified melamine sponge for oil and organic solvent cleanup. Journal of Colloid and Interface Science, 2020, 566, 242-247.	9.4	42
78	Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation. Cellulose, 2020, 27, 3277-3286.	4.9	19
79	Etched ZIFâ€8 as a Filler in Mixedâ€Matrix Membranes for Enhanced CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2020, 26, 7918-7922.	3.3	22
80	Synergy of Ni dopant and oxygen vacancies in ZnO for efficient photocatalytic depolymerization of sodium lignosulfonate. Chemical Engineering Journal, 2020, 394, 125050.	12.7	55
81	Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup. Journal of Colloid and Interface Science, 2019, 533, 182-189.	9.4	51
82	Glucose-derived solid acids and their stability enhancement for upgrading biodiesel via esterification. Chinese Journal of Chemical Engineering, 2019, 27, 1067-1072.	3.5	7
83	Two-step preparation of hierarchical porous carbon from KOH-activated wood sawdust for supercapacitor. Materials Chemistry and Physics, 2019, 238, 121956.	4.0	65
84	Defect-Tailoring and Titanium Substitution in Metal–Organic Framework UiO-66-NH ₂ for the Photocatalytic Degradation of Cr(VI) to Cr(III). ACS Applied Nano Materials, 2019, 2, 5973-5980.	5.0	59
85	Platinum supported cellulose-based carbon with oxygen-containing functional groups for benzyl alcohol oxidation. Journal of Physics and Chemistry of Solids, 2019, 135, 109095.	4.0	8
86	Defect Rich UiO-66 with Enhanced Adsorption and Photosensitized Reduction of Cr(VI) under Visible Light. Industrial & Engineering Chemistry Research, 2019, 58, 21562-21568.	3.7	16
87	Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 17646-17659.	3.7	152
88	Facile construction of three-dimensional netted ZnIn2S4 by cellulose nanofibrils for efficiently photocatalytic reduction of Cr(VI). Chemical Engineering Journal, 2019, 375, 121990.	12.7	109
89	A green strategy for preparing durable underwater superoleophobic calcium alginate hydrogel coated-meshes for oil/water separation. International Journal of Biological Macromolecules, 2019, 136, 13-19.	7.5	36
90	Essential microstructure of cathode functional layers of solid oxide electrolysis cells for CO2 electrolysis. Journal of CO2 Utilization, 2019, 32, 214-218.	6.8	19

#	Article	IF	Citations
91	Glutaraldehyde and polyvinyl alcohol crosslinked cellulose membranes for efficient methyl orange and Congo red removal. Cellulose, 2019, 26, 5065-5074.	4.9	42
92	Sustainable and scalable in-situ synthesis of hydrochar-wrapped Ti3AlC2-derived nanofibers as adsorbents to remove heavy metals. Bioresource Technology, 2019, 282, 222-227.	9.6	35
93	ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. Journal of Membrane Science, 2019, 581, 252-261.	8.2	96
94	Inorganic Salts Induce Thermally Reversible and Antiâ€Freezing Cellulose Hydrogels. Angewandte Chemie, 2019, 131, 7444-7448.	2.0	12
95	Inorganic Salts Induce Thermally Reversible and Antiâ€Freezing Cellulose Hydrogels. Angewandte Chemie - International Edition, 2019, 58, 7366-7370.	13.8	322
96	Leaf-shaped bimetallic sulfides@N-doped porous carbon as advanced lithium-ion battery anode. Journal of Alloys and Compounds, 2019, 792, 8-15.	5.5	15
97	Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chemical Engineering Journal, 2019, 371, 138-144.	12.7	143
98	Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation. Renewable Energy, 2019, 138, 1010-1017.	8.9	35
99	Designing of Recyclable Attapulgite for Wastewater Treatments: A Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 1855-1869.	6.7	81
100	Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Separation and Purification Technology, 2019, 213, 63-69.	7.9	57
101	Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis. Materials Research Bulletin, 2019, 112, 297-306.	5.2	72
102	TiO2 nanorods loaded with Au Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol. Journal of Physics and Chemistry of Solids, 2019, 126, 27-32.	4.0	34
103	Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance. Journal of Colloid and Interface Science, 2019, 538, 569-577.	9.4	51
104	Catalytic CeO2 washcoat over microchanneled supporting cathodes of solid oxide electrolysis cells for efficient and stable CO2 reduction. Journal of Power Sources, 2019, 412, 344-349.	7.8	13
105	Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors. Journal of Physics and Chemistry of Solids, 2019, 125, 57-63.	4.0	56
106	Ultrafine CoSe nano-crystallites confined in leaf-like N-doped carbon for long-cyclic and fast sodium ion storage. Electrochimica Acta, 2019, 294, 173-182.	5.2	63
107	Design of porous Co3O4 nanosheets via one-step synthesis as high-performance anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1-7.	2.5	16
108	Tuning Catalytic Selectivity in Cascade Reactions by Light Irradiation. Catalysis Letters, 2018, 148, 1124-1129.	2.6	3

#	Article	IF	Citations
109	Novel N-doped ZrO ₂ with enhanced visible-light photocatalytic activity for hydrogen production and degradation of organic dyes. RSC Advances, 2018, 8, 6752-6758.	3.6	48
110	Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. Journal of Hazardous Materials, 2018, 349, 234-241.	12.4	206
111	Recent development of plasmon-mediated photocatalysts and their potential in selectivity regulation. Journal of Materials Chemistry A, 2018, 6, 1941-1966.	10.3	56
112	Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231, 317-342.	20.2	376
113	Facile fabrication of ZIFâ€8 embedded millimeterâ€sized porous polyethersulfone beads for selective dye removal. Polymer Composites, 2018, 39, 3896-3902.	4.6	7
114	Electrospun soyâ€proteinâ€based nanofibrous membranes for effective antimicrobial air filtration. Journal of Applied Polymer Science, 2018, 135, 45766.	2.6	60
115	In-situ gelation of sodium alginate supported on melamine sponge for efficient removal of copper ions. Journal of Colloid and Interface Science, 2018, 512, 7-13.	9.4	102
116	Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals. Journal of Colloid and Interface Science, 2018, 514, 190-198.	9.4	126
117	Low-Temperature Transformation of C/SiO $<$ sub $>$ 2 $<$ /sub $>$ Nanocomposites to \hat{l}^2 -SiC with High Surface Area. ACS Sustainable Chemistry and Engineering, 2018, 6, 1068-1073.	6.7	29
118	Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. Journal of Membrane Science, 2018, 568, 10-16.	8.2	106
119	Bromomethylated poly(phenylene oxide) (BPPO)â€assisted fabrication of UiOâ€66â€NH ₂ /BPPO/polyethersulfone mixed matrix membrane for enhanced gas separation. Journal of Applied Polymer Science, 2018, 135, 46759.	2.6	19
120	Design of Melamine Sponge-Based Three-Dimensional Porous Materials toward Applications. Industrial & Engineering Chemistry Research, 2018, 57, 7322-7330.	3.7	129
121	Controlled synthesis of hierarchical beta zeolite through design template to enhance gas-phase beckmann rearrangement performance. Microporous and Mesoporous Materials, 2018, 272, 202-208.	4.4	9
122	Facilitated Transport of CO ₂ Through the Transparent and Flexible Cellulose Membrane Promoted by Fixed-Site Carrier. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24930-24936.	8.0	53
123	Bilayer N-doped carbon derived from furfuryl alcohol-wrapped melamine sponge as high-performance supercapacitor. Journal of Electroanalytical Chemistry, 2018, 823, 633-637.	3.8	18
124	Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr). Fuel, 2018, 234, 256-262.	6.4	98
125	Facile preparation of Zn0.5Cd0.5S@RGO nanocomposites as efficient visible light driven photocatalysts. Journal of Alloys and Compounds, 2017, 705, 392-398.	5.5	16
126	A hierarchically structured PtCo nanoflakes–nanotube as an electrocatalyst for methanol oxidation. Inorganic Chemistry Frontiers, 2017, 4, 845-849.	6.0	6

#	Article	IF	Citations
127	Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels. Journal of Power Sources, 2017, 347, 259-269.	7.8	63
128	Facile stir-dried preparation of g-C ₃ N ₄ /TiO ₂ homogeneous composites with enhanced photocatalytic activity. RSC Advances, 2017, 7, 10668-10674.	3.6	47
129	Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. Journal of Colloid and Interface Science, 2017, 502, 52-58.	9.4	50
130	ZIF-8 derived porous N-doped ZnO with enhanced visible light-driven photocatalytic activity. Journal of Physics and Chemistry of Solids, 2017, 102, 110-114.	4.0	72
131	Isomerization of Styrene Oxide to Phenyl Acetaldehyde over Different Modified Beta Zeolites. Catalysis Letters, 2017, 147, 1523-1532.	2.6	6
132	Graphene oxide gas separation membranes intercalated by UiO-66-NH 2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539, 172-177.	8.2	91
133	Effects of crystal size and pore structure on catalytic performance of TS-1 in the isomerization of styrene oxide to phenyl acetaldehyde. Microporous and Mesoporous Materials, 2017, 247, 16-22.	4.4	23
134	Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. Journal of Colloid and Interface Science, 2017, 499, 151-158.	9.4	364
135	Highly dispersed Ag/TiO ₂ via adsorptive self-assembly for bactericidal application. RSC Advances, 2017, 7, 13347-13352.	3.6	14
136	Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology, 2017, 177, 71-85.	7.9	147
137	Facile and fast removal of oil through porous carbon spheres derived from the fruit of Liquidambar formosana. Chemosphere, 2017, 170, 68-74.	8.2	27
138	Furfuryl alcohol modified melamine sponge for highly efficient oil spill clean-up and recovery. Journal of Materials Chemistry A, 2017, 5, 21893-21897.	10.3	75
139	Temperature-induced formation of cellulose nanofiber film with remarkably high gas separation performance. Cellulose, 2017, 24, 5649-5656.	4.9	35
140	Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chemistry, 2017, 215, 477-482.	8.2	89
141	Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization. Journal of Applied Polymer Science, 2016, 133, .	2.6	33
142	Core–sheath structured electrospun nanofibrous membranes for oil–water separation. RSC Advances, 2016, 6, 41861-41870.	3.6	62
143	Millimeter-sized carbon/TiO2 beads fabricated by phase inversion method for oil and dye adsorption. RSC Advances, 2016, 6, 16314-16318.	3.6	12
144	Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous and Mesoporous Materials, 2016, 234, 287-292.	4.4	177

#	Article	IF	Citations
145	Epoxidised soybean oil polymer composites reinforced with modified microcrystalline cellulose. Journal of Experimental Nanoscience, 2016, 11, 1213-1226.	2.4	8
146	Recent advances in the direct fabrication of millimeter-sized hierarchical porous materials. RSC Advances, 2016, 6, 80840-80846.	3.6	27
147	Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism. RSC Advances, 2016, 6, 109608-109612.	3.6	86
148	Rapid Construction of ZnO@ZIF-8 Heterostructures with Size-Selective Photocatalysis Properties. ACS Applied Materials & Diterfaces, 2016, 8, 9080-9087.	8.0	310
149	Facile synthesis of TaO _x N _y photocatalysts with enhanced visible photocatalytic activity. RSC Advances, 2016, 6, 1860-1864.	3.6	19
150	Morphology Control of Zeolitic Imidazolate Framework by Addition of Amino Acid <scp>l</scp> -Histidine. Chemistry Letters, 2015, 44, 1080-1082.	1.3	5
151	Microcrystalline cellulose as reactive reinforcing fillers for epoxidized soybean oil polymer composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	23
152	Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 358-366.	4.7	113
153	Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry A, 2015, 3, 15715-15722.	10.3	149
154	A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method. Applied Surface Science, 2015, 344, 112-118.	6.1	113
155	One-pot hydrothermal synthesis of zeolite/sodium tantalate composite and its photodegradation of methyl orange. Materials Research Bulletin, 2015, 68, 185-188.	5.2	6
156	Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks. CrystEngComm, 2015, 17, 4970-4976.	2.6	66
157	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. Scientific Reports, 2015, 4, 7420.	3.3	10
158	Review of the applications of microreactors. Renewable and Sustainable Energy Reviews, 2015, 47, 519-539.	16.4	243
159	Adjusting phase transition of titania-based nanotubes via hydrothermal and post treatment. RSC Advances, 2015, 5, 89777-89782.	3.6	13
160	Unusual Air Filters with Ultrahigh Efficiency and Antibacterial Functionality Enabled by ZnO Nanorods. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21538-21544.	8.0	121
161	Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chemical Society Reviews, 2014, 43, 4470-4493.	38.1	545
162	Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes. Materials Research Bulletin, 2014, 55, 13-18.	5.2	15

#	Article	IF	Citations
163	Carbon composite membrane derived from a two-dimensional zeolitic imidazolate framework and its gas separation properties. Carbon, 2014, 72, 242-249.	10.3	47
164	A fast in situ seeding route to the growth of a zeolitic imidazolate framework-8/AAO composite membrane at room temperature. RSC Advances, 2014, 4, 7634.	3.6	22
165	UV/ozone-assisted low temperature preparation of mesoporous TiO ₂ with tunable phase composition and enhanced solar light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 18791-18795.	10.3	11
166	Crystal Transformation in Zeolitic-Imidazolate Framework. Crystal Growth and Design, 2014, 14, 6589-6598.	3.0	157
167	Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Advances, 2014, 4, 1128-1132.	3.6	130
168	Selective adsorption of palladium complex for carbon-supported Pd/Mo electrocatalyst by the charge enhanced dry impregnation method. Journal of Power Sources, 2014, 272, 1030-1036.	7.8	3
169	ZIF \hat{a} 1/Polybenzimidazole composite membrane with improved hydrogen separation performance. Journal of Applied Polymer Science, 2014, 131, .	2.6	22
170	Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Microporous and Mesoporous Materials, 2014, 194, 1-7.	4.4	50
171	Hollow carbon beads fabricated by phase inversion method for efficient oil sorption. Carbon, 2014, 69, 25-31.	10.3	43
172	Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014, 184, 55-60.	4.4	332
173	In situ growth of Co ₃ O ₄ nanoparticles on α-MnO ₂ nanotubes: a new hybrid for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8465-8471.	10.3	44
174	Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science, 2014, 116, 704-709.	3.8	90
175	Recent Advances in Liquid-phase Heterogeneous Photocatalysis for Organic Synthesis by Selective Oxidation. Current Organic Chemistry, 2014, 18, 1365-1372.	1.6	21
176	Fibrous NiO/CeO ₂ nanocatalysts for the partial oxidation of methane at microsecond contact times. RSC Advances, 2013, 3, 1341-1345.	3.6	16
177	Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. Ceramics International, 2013, 39, 7551-7556.	4.8	56
178	Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent. RSC Advances, 2013, 3, 887-894.	3.6	92
179	One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid and Polymer Science, 2013, 291, 2711-2717.	2.1	40
180	Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Transactions, 2013, 42, 16608.	3.3	116

#	Article	IF	Citations
181	A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chemical Communications, 2013, 49, 9500.	4.1	514
182	Synthesis of Zeolitic Imidazolate Frameworkâ€7 in a Water/Ethanol Mixture and Its Ethanolâ€Induced Reversible Phase Transition. ChemPlusChem, 2013, 78, 1222-1225.	2.8	58
183	Room temperature aqueous solution synthesis of pinacol (C6) by photocatalytic CC coupling of isopropanol. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 272, 1-5.	3.9	23
184	ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. Journal of Materials Chemistry A, 2013, 1, 11563.	10.3	261
185	Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method. Microporous and Mesoporous Materials, 2013, 179, 10-16.	4.4	71
186	Sawtooth-shaped nickel-based submicrowires andÂtheir electrocatalytic activity for methanol oxidation in alkaline media. International Journal of Hydrogen Energy, 2013, 38, 11863-11869.	7.1	13
187	Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. Journal of Alloys and Compounds, 2013, 551, 125-130.	5.5	79
188	Formation of ZIF-8 membranes and crystals in a diluted aqueous solution. Materials Chemistry and Physics, 2013, 139, 1003-1008.	4.0	40
189	The synergetic effect of N-doped graphene and silver nanowires for high electrocatalytic performance in the oxygen reduction reaction. RSC Advances, 2013, 3, 11552.	3.6	44
190	High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15, 3601.	2.6	149
191	Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous and Mesoporous Materials, 2013, 165, 200-204.	4.4	104
192	Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. Microporous and Mesoporous Materials, 2013, 168, 15-18.	4.4	55
193	Alumina Hollow Fiber Supported ZIF-7 Membranes: Synthesis and Characterization. Journal of Nanoscience and Nanotechnology, 2013, 13, 1431-1434.	0.9	8
194	Phase inversion spinning of ultrafine hollow fiber membranes through a single orifice spinneret. Journal of Membrane Science, 2012, 421-422, 8-14.	8.2	23
195	Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals. Progress in Natural Science: Materials International, 2012, 22, 684-692.	4.4	17
196	Evaluation of quaternary phosphonium-based polymer membranes for desalination application. Desalination, 2012, 292, 119-123.	8.2	15
197	Poly(furfuryl alcohol)-assisted pyrolysis synthesis of ceramic nanoparticles for solid oxide fuel cells. Materials Research Bulletin, 2012, 47, 1661-1665.	5.2	0
198	Effects of polymerization conditions on the properties of poly(furfuryl alcohol) composite membranes. Journal of Applied Polymer Science, 2012, 124, 3383-3391.	2.6	14

#	Article	IF	Citations
199	Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering. Soft Matter, 2011, 7, 10048.	2.7	143
200	Role of ethanol in sodalite crystallization in an ethanol–Na2O–Al2O3–SiO2–H2O system. CrystEngComm, 2011, 13, 4714.	2.6	28
201	Eggshell membrane-templated synthesis of highly crystalline perovskite ceramics for solid oxidefuelcells. Journal of Materials Chemistry, 2011, 21, 1028-1032.	6.7	39
202	Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chemical Communications, 2011, 47, 2559.	4.1	311
203	Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy and Environmental Science, 2011, 4, 4074.	30.8	258
204	Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386, 187-193.	8.2	139
205	Influence of glycerol cosolvent on the synthesis of size controllable zeolite A. Materials Letters, 2011, 65, 2304-2306.	2.6	18
206	A 3D fibrous cathode with high interconnectivity for solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 1038-1041.	4.7	21
207	Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chemical Communications, 2011, 47, 1710.	4.1	267
208	Fast synthesis and morphology control of silicalite-1 in the presence of polyvinyl alcohol. Journal of Porous Materials, 2011, 18, 451-454.	2.6	7
209	Hollow sodalite spheres synthesized in a first-closed then-open system from the synthesis gels aged under ultrahigh pressures. Microporous and Mesoporous Materials, 2011, 143, 189-195.	4.4	7
210	Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chemical Engineering Journal, 2010, 162, 364-370.	12.7	75
211	Preparation of binderless honeycomb silicalite-1 monolith by using bundled palm fibers as template. Journal of Porous Materials, 2010, 17, 329-334.	2.6	8
212	Low boiling point organic amine-catalyzed transesterification of cottonseed oil to biodiesel with trace amount of KOH as co-catalyst. Fuel, 2010, 89, 3871-3875.	6.4	16
213	In Situ Crystallization of Macroporous Monoliths with Hollow NaP Zeolite Structure. Chemistry of Materials, 2010, 22, 5271-5278.	6.7	51
214	Fast Synthesis of Biodiesel at High Throughput in Microstructured Reactors. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 1259-1264.	3.7	76
215	Controlling zeolite structures and morphologies using polymer networks. Journal of Materials Chemistry, 2010, 20, 9827.	6.7	40
216	Microwave-assisted fast vapor-phase transport synthesis of MnAPO-5 molecular sieves. Materials Research Bulletin, 2009, 44, 956-959.	5.2	8

#	Article	IF	Citations
217	Preparation of magnetic ZSM-5/Ni/fly-ash hollow microspheres using fly-ash cenospheres as the template. Materials Letters, 2009, 63, 203-205.	2.6	30
218	Rapid Crystallization of Silicalite Nanocrystals in a Capillary Microreactor. Chemical Engineering and Technology, 2009, 32, 732-737.	1.5	11
219	Fast Esterification of Acetic Acid with Short Chain Alcohols in Microchannel Reactor. Catalysis Letters, 2009, 132, 147-152.	2.6	9
220	Preparation of mesoporous carbons using acid- and alkali-treated zeolite X as the template. Journal of Porous Materials, 2009, 16, 699-705.	2.6	10
221	Preparation of mesopore-rich carbons using attapulgite as templates and furfuryl alcohol as carbon source through a vapor deposition polymerization method. Microporous and Mesoporous Materials, 2009, 122, 294-300.	4.4	40
222	Preparation and properties of sulfonated carbon–silica composites from sucrose dispersed on MCM-48. Chemical Engineering Journal, 2009, 148, 201-206.	12.7	33
223	Adsorption of methylene blue on mesoporous carbons prepared using acid- and alkaline-treated zeolite X as the template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333, 115-119.	4.7	50
224	Preparation of Ultrafine Zeolite A Crystals with Narrow Particle Size Distribution Using a Two-Phase Liquid Segmented Microfluidic Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 8471-8477.	3.7	34
225	Preparation of uniform nano-sized zeolite A crystals in microstructured reactors using manipulated organic template-free synthesis solutions. Chemical Communications, 2009, , 7233.	4.1	39
226	Synthesis of Ordered Mesoporous Carbons Using Resorcinol-Formaldehyde Sol as the Carbon Source and As-synthesized MCM-48 as the Template. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 23-28.	1.3	0
227	Cubes of Zeoliteâ€A with an Amorphous Core. Angewandte Chemie - International Edition, 2008, 47, 8397-8399.	13.8	76
228	Preparation of magnetic hollow ZSM-5/Ni composite spheres. Microporous and Mesoporous Materials, 2008, 112, 450-457.	4.4	17
229	Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs. Materials Chemistry and Physics, 2008, 112, 637-640.	4.0	22
230	Synthesis of titanium silicalite-1 nanocrystals on silica nanofibers by steam-assisted dry gel conversion technique. Materials Letters, 2008, 62, 3316-3318.	2.6	10
231	Synthesis of nanocrystalline sodalite with organic additives. Materials Letters, 2008, 62, 4028-4030.	2.6	31
232	Low Boiling Point Organic Amine-Catalyzed Transesterification for Biodiesel Production. Energy & Energy & Fuels, 2008, 22, 1353-1357.	5.1	19
233	Hollow zeolite structures formed by crystallization in crosslinked polyacrylamide hydrogels. Journal of Materials Chemistry, 2008, 18, 3337.	6.7	59
234	Effect of seeding on formation of silicon carbide nanostructures from mesoporous silica–carbon nanocomposites. Nanotechnology, 2008, 19, 175605.	2.6	15

#	Article	IF	Citations
235	Hydrothermal growth of titania nanostructures with tunable phase and shape. Materials Letters, 2007, 61, 4610-4613.	2.6	27
236	Preparation of Crystalline Mesoporous Titania Using Furfuryl Alcohol as Polymerizable Solvent. Industrial & Engineering Chemistry Research, 2007, 46, 6264-6268.	3.7	25
237	Role of Pores in the Carbothermal Reduction of Carbonâ [^] Silica Nanocomposites into Silicon Carbide Nanostructures. Journal of Physical Chemistry C, 2007, 111, 636-641.	3.1	60
238	Organic-functionalized sodalite nanocrystals and their dispersion in solvents. Microporous and Mesoporous Materials, 2007, 106, 262-267.	4.4	23
239	Preparation of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Science & Description of Ni/TiO2 composite hollow fibers by electroless plating. Materials Properties fibers fibers by electroless plating. Materials Properties fibers fiber	5.6	7
240	Tuning the Morphology of Bismuth Ferrite Nano―and Microcrystals: From Sheets to Fibers. Small, 2007, 3, 1523-1528.	10.0	49
241	Humic Acids as a Complexible Fuel for Combustion Synthesis of Ceramic Nanoparticles. Journal of the American Ceramic Society, 2007, 90, 4012-4014.	3.8	4
242	Fabrication of porous polymer particles with high anion exchange capacity by amination reaction in aqueous medium. Green Chemistry, 2006, 8, 386.	9.0	12
243	Formation of Colloidal Hydroxy-Sodalite Nanocrystals by the Direct Transformation of Silicalite Nanocrystals. Chemistry of Materials, 2006, 18, 1394-1396.	6.7	50
244	Use of Poly(furfuryl alcohol) in the Fabrication of Nanostructured Carbons and Nanocomposites. Industrial & Description of Nanostructured Carbons and Nanocomposites.	3.7	119
245	Incorporating organic polymer into silica walls: A novel strategy for synthesis of templated mesoporous silica with tunable pore structure. Microporous and Mesoporous Materials, 2005, 82, 183-189.	4.4	24
246	Growth of SAPO-34 in polymer hydrogels through vapor-phase transport. Microporous and Mesoporous Materials, 2005, 85, 267-272.	4.4	41
247	Preparation of colloidal microporous carbon spheres from furfuryl alcohol. Carbon, 2005, 43, 1709-1715.	10.3	84
248	Combinatorial synthesis of SAPO-34 via vapor-phase transport. Chemical Communications, 2003, , 2232.	4.1	28
249	<scp> UiOâ€66â€NH ₂ </scp> particle size effects on gas separation performance of cellulose acetate composite membranes. Journal of Applied Polymer Science, 0, , .	2.6	4