Natalia A Peres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/412875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strawberry Yield Prediction Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages. Remote Sensing, 2019, 11, 1584.	1.8	124
2	Resistance to Fluopyram, Fluxapyroxad, and Penthiopyrad in <i>Botrytis cinerea</i> from Strawberry. Plant Disease, 2014, 98, 532-539.	0.7	122
3	Fungicide Resistance Profiles in <i>Botrytis cinerea</i> from Strawberry Fields of Seven Southern U.S. States. Plant Disease, 2014, 98, 825-833.	0.7	90
4	Managing <i>Colletotrichum</i> on Fruit Crops: A "Complex―Challenge. Plant Disease, 2020, 104, 2301-2316.	0.7	86
5	Characterization of Iprodione Resistance in <i>Botrytis cinerea</i> from Strawberry and Blackberry. Phytopathology, 2014, 104, 396-402.	1.1	74
6	Resistance in Strawberry Isolates of <i>Colletotrichum acutatum</i> from Florida to Quinone-Outside Inhibitor Fungicides. Plant Disease, 2016, 100, 2050-2056.	0.7	67
7	Pedigree-Based Analysis in a Multiparental Population of Octoploid Strawberry Reveals QTL Alleles Conferring Resistance to <i>Phytophthora cactorum</i> . G3: Genes, Genomes, Genetics, 2017, 7, 1707-1719.	0.8	58
8	The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. Transgenic Research, 2015, 24, 693-704.	1.3	51
9	Pre- and Post-Infection Activity of Pyraclostrobin for Control of Anthracnose Fruit Rot of Strawberry Caused by Colletotrichum acutatum. Plant Disease, 2006, 90, 862-868.	0.7	50
10	Ontogenic Resistance of Leaves and Fruit, and How Leaf Folding Influences the Distribution of Powdery Mildew on Strawberry Plants Colonized by <i>Podosphaera aphanis</i> . Phytopathology, 2014, 104, 954-963.	1.1	49
11	FaRXf1: a locus conferring resistance to angular leaf spot caused by Xanthomonas fragariae in octoploid strawberry. Theoretical and Applied Genetics, 2016, 129, 1191-1201.	1.8	49
12	Effect of Pre- and Post-Plant Fungicide and Fertilizer Treatments on Infection by <i>Colletotrichum acutatum</i> , Plant Survival, and Yield of Annual Strawberry in Florida. Plant Health Progress, 2010, 11, .	0.8	46
13	Sources of Primary Inoculum of <i>Botrytis cinerea</i> and Their Impact on Fungicide Resistance Development in Commercial Strawberry Fields. Plant Disease, 2017, 101, 1761-1768.	0.7	42
14	Fitness, Competitive Ability, and Mutation Stability of Isolates of <i>Colletotrichum acutatum</i> from Strawberry Resistant to Qol Fungicides. Phytopathology, 2018, 108, 462-468.	1.1	42
15	<i>Colletotrichum acutatum</i> and <i>C. gloeosporioides</i> Species Complexes Associated with Apple in Brazil. Plant Disease, 2019, 103, 268-275.	0.7	42
16	Crop loss, aetiology, and epidemiology of citrus black spot in Ghana. European Journal of Plant Pathology, 2012, 133, 657-670.	0.8	40
17	Strawberry Production in Brazil and South America. International Journal of Fruit Science, 2013, 13, 156-161.	1.2	38
18	Heat Treatment Effects on Strawberry Plant Survival and Angular Leaf Spot, Caused by <i>Xanthomonas fragariae</i> , in Nursery Production. Plant Disease, 2009, 93, 299-308.	0.7	37

#	Article	IF	CITATIONS
19	Widespread Resistance to QoI Fungicides of <i>Colletotrichum acutatum</i> from Strawberry Nurseries and Production Fields. Plant Health Progress, 2018, 19, 338-341.	0.8	34
20	FaRCg1: a quantitative trait locus conferring resistance to Colletotrichum crown rot caused by Colletotrichum gloeosporioides in octoploid strawberry. Theoretical and Applied Genetics, 2018, 131, 2167-2177.	1.8	34
21	Anthracnose Fruit and Root Necrosis of Strawberry Are Caused by a Dominant Species Within the <i>Colletotrichum acutatum</i> Species Complex in the United States. Phytopathology, 2019, 109, 1293-1301.	1.1	34
22	â€~Florida Radiance' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1769-1770.	0.5	33
23	Effectiveness of fungicide treatments following the Strawberry Advisory System for control of Botrytis fruit rot in Florida. Crop Protection, 2017, 100, 163-167.	1.0	32
24	Meta-Analysis of a Web-Based Disease Forecast System for Control of Anthracnose and Botrytis Fruit Rots of Strawberry in Southeastern United States. Plant Disease, 2017, 101, 1910-1917.	0.7	32
25	Sources of Inoculum and Survival of <i>Macrophomina phaseolina</i> in Florida Strawberry Fields. Plant Disease, 2019, 103, 2417-2424.	0.7	28
26	Implementation of simple sequence repeat markers to genotype Florida strawberry varieties. Euphytica, 2010, 173, 63-75.	0.6	27
27	Effectiveness of Cyantraniliprole for Managing Bemisia tabaci (Hemiptera: Aleyrodidae) and Interfering with Transmission of Tomato Yellow Leaf Curl Virus on Tomato. Journal of Economic Entomology, 2015, 108, 894-903.	0.8	26
28	Outbreak of Leaf Spot and Fruit Rot in Florida Strawberry Caused by <i>Neopestalotiopsis</i> spp Plant Disease, 2021, 105, 305-315.	0.7	26
29	Reduced Sensitivity to Azoxystrobin of <i>Monilinia fructicola</i> Isolates From Brazilian Stone Fruits is Not Associated With Previously Described Mutations in the Cytochrome <i>b</i> Gene. Plant Disease, 2017, 101, 766-773.	0.7	25
30	Use of Ultraviolet Light to Suppress Powdery Mildew in Strawberry Fruit Production Fields. Plant Disease, 2021, 105, 2402-2409.	0.7	24
31	Sensation™ †Florida127' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 1088-1091.	0.5	23
32	A Transcript Accounting from Diverse Tissues of a Cultivated Strawberry. Plant Genome, 2010, 3, .	1.6	22
33	Baseline Sensitivity of <i>Guignardia citricarpa</i> Isolates from Florida to Azoxystrobin and Pyraclostrobin. Plant Disease, 2014, 98, 780-789.	0.7	22
34	Sensitivity of <i>Colletotrichum acutatum</i> Isolates from Citrus to Carbendazim, Difenoconazole, Tebuconazole, and Trifloxystrobin. Plant Disease, 2020, 104, 1621-1628.	0.7	22
35	Evaluation of Strawberry Species and Cultivars for Powdery Mildew Resistance in Open-field and High Tunnel Production Systems. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1125-1129.	0.5	22
36	Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states. International Journal of Biometeorology, 2016, 60, 1761-1774.	1.3	21

#	Article	IF	CITATIONS
37	FaRCa1: a major subgenome-specific locus conferring resistance to Colletotrichum acutatum in strawberry. Theoretical and Applied Genetics, 2019, 132, 1109-1120.	1.8	21
38	Pre- and post-inoculation activity of a protectant and a systemic fungicide for control of anthracnose fruit rot of strawberry under different wetness durations. Crop Protection, 2010, 29, 1105-1110.	1.0	20
39	Characterization of Colletotrichum Species Causing Anthracnose of Pomegranate in the Southeastern United States. Plant Disease, 2019, 103, 2771-2780.	0.7	20
40	Baseline Sensitivity of <i>Botrytis cinerea</i> Isolates from Strawberry to Isofetamid Compared to other SDHIs. Plant Disease, 2020, 104, 1224-1230.	0.7	20
41	Diversity in the <i>erg27</i> Gene of <i>Botrytis cinerea</i> Field Isolates from Strawberry Defines Different Levels of Resistance to the Hydroxyanilide Fenhexamid. Plant Disease, 2014, 98, 1131-1137.	0.7	19
42	Sensitivity of <i>Botrytis cinerea</i> Isolates from Conventional and Organic Strawberry Fields in Brazil to Azoxystrobin, Iprodione, Pyrimethanil, and Thiophanate-Methyl. Plant Disease, 2018, 102, 1803-1810.	0.7	19
43	Survey of Physical, Chemical, and Microbial Water Quality in Greenhouse and Nursery Irrigation Water. HortTechnology, 2012, 22, 778-786.	0.5	19
44	â€~Florida Beauty' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1443-1447.	0.5	18
45	High-throughput marker assays for FaRPc2-mediated resistance to Phytophthora crown rot in octoploid strawberry. Molecular Breeding, 2018, 38, 1.	1.0	17
46	Winterstar™ (†FL 05-107') Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 296-298.	0.5	17
47	†Florida Brilliance' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 2073-2077.	0.5	17
48	Evaluating Weeds as Hosts of <i>Tomato yellow leaf curl virus</i> : Table 1 Environmental Entomology, 2015, 44, 1101-1107.	0.7	15
49	The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L BMC Plant Biology, 2017, 17, 230.	1.6	15
50	Effect of Formulations of Allyl Isothiocyanate on Survival of <i>Macrophomina phaseolina</i> from Strawberry. Plant Disease, 2018, 102, 2212-2219.	0.7	15
51	Development of High-Throughput SNP Genotyping Assays for Rapid Detection of Strawberry <i>Colletotrichum</i> Species and the G143A Mutation. Phytopathology, 2018, 108, 1501-1508.	1.1	15
52	Efficacy and Baseline Sensitivity of Succinate-Dehydrogenase-Inhibitor Fungicides for Management of Colletotrichum Crown Rot of Strawberry. Plant Disease, 2020, 104, 2860-2865.	0.7	15
53	Identifying Resistance to Crown Rot Caused by Colletotrichum gloeosporioides in Strawberry. Plant Disease, 2015, 99, 954-961.	0.7	14
54	Mutations in the Membrane-Anchored SdhC Subunit Affect Fitness and Sensitivity to Succinate Dehydrogenase Inhibitors in <i>Botrytis cinerea</i> Populations from Multiple Hosts. Phytopathology, 2020, 110, 327-335.	1.1	14

#	Article	IF	CITATIONS
55	Resistance to Mefenoxam of <i>Phytophthora cactorum</i> and <i>Phytophthora nicotianae</i> Causing Crown and Leather Rot in Florida Strawberry. Plant Disease, 2021, 105, 3490-3495.	0.7	14
56	Pulsed Water Mists for Suppression of Strawberry Powdery Mildew. Plant Disease, 2021, 105, 71-77.	0.7	13
57	Toward Breeding for Resistance to Fusarium Tuber Rot in Caladium: Inoculation Technique and Sources of Resistance. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1135-1139.	0.5	13
58	Prevalence of <i>Botrytis</i> Cryptic Species in Strawberry Nursery Transplants and Strawberry and Blueberry Commercial Fields in the Eastern United States. Plant Disease, 2018, 102, 398-404.	0.7	12
59	Sensitivity of the Colletotrichum acutatum Species Complex From Apple Trees in Brazil to Dithiocarbamates, Methyl Benzimidazole Carbamates, and Quinone Outside Inhibitor Fungicides. Plant Disease, 2019, 103, 2569-2576.	0.7	12
60	Characterization of Strains of Xanthomonas axonopodis pv. dieffenbachiae from Bacterial Blight of Caladium and Identification of Sources of Resistance for Breeding Improved Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 220-224.	0.5	12
61	Baseline sensitivity of Colletotrichum acutatum isolates from Brazilian strawberry fields to azoxystrobin, difenoconazole, and thiophanate-methyl. Tropical Plant Pathology, 2018, 43, 533-542.	0.8	11
62	A Threshold-Based Decision-Support System for Fungicide Applications Provides Cost-Effective Control of Citrus Postbloom Fruit Drop. Plant Disease, 2019, 103, 2433-2442.	0.7	11
63	Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC Plant Biology, 2020, 20, 539.	1.6	11
64	Twospotted Spider Mites (Tetranychus urticae) on Strawberry (Fragaria × ananassa) Transplants, and the Potential to Eliminate Them with Steam Treatment. International Journal of Fruit Science, 2020, 20, 978-991.	1.2	11
65	Validation of a Decision Support System for Blueberry Anthracnose and Fungicide Sensitivity of <i>Colletotrichum gloeosporioides</i> Isolates. Plant Disease, 2021, 105, 1806-1813.	0.7	11
66	Phytophthora Crown Rot of Florida Strawberry: Inoculum Sources and Thermotherapy of Transplants for Disease Management. Plant Disease, 2021, 105, 3496-3502.	0.7	11
67	Detection and Characterization of Quinone Outside Inhibitor-Resistant <i>Phytophthora cactorum</i> and <i>P</i> . <i>nicotianae</i> Causing Leather Rot in Florida Strawberry. Plant Disease, 2022, 106, 1203-1208.	0.7	11
68	Effect of Inoculum Concentration and Interrupted Wetness Duration on the Development of Anthracnose Fruit Rot of Strawberry. Plant Disease, 2017, 101, 372-377.	0.7	10
69	Sensory Quality, Physicochemical Attributes, Polyphenol Profiles, and Residual Fungicides in Strawberries from Different Disease-Control Treatments. Journal of Agricultural and Food Chemistry, 2018, 66, 6986-6996.	2.4	9
70	Citrus advisory system: A web-based postbloom fruit drop disease alert system. Computers and Electronics in Agriculture, 2020, 178, 105781.	3.7	9
71	Strawberry Plant Wetness Detection Using Color and Thermal Imaging. Journal of Biosystems Engineering, 2020, 45, 409-421.	1.2	9
72	â€~Florida Elyana' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1775-1776.	0.5	9

#	Article	IF	CITATIONS
73	FaRCa1 Confers Moderate Resistance to the Root Necrosis Form of Strawberry Anthracnose Caused by Colletotrichum acutatum. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 693-698.	0.5	9
74	Investigating Alternative Strategies for Managing Bacterial Angular Leaf Spot in Strawberry Nursery Production. International Journal of Fruit Science, 2013, 13, 234-245.	1.2	8
75	The Importance of Selecting Appropriate Rotation and Tank-Mix Partners for Novel SDHIs to Enhance Botrytis Fruit Rot Control in Strawberry. Plant Disease, 2019, 103, 729-736.	0.7	8
76	Evaluation of ethanedinitrile (EDN) as a preplant soil fumigant in Florida strawberry production. Pest Management Science, 2020, 76, 1134-1141.	1.7	8
77	Improving the Toolbox to Manage Phytophthora Diseases of Strawberry: Searching for Chemical Alternatives. Plant Health Progress, 2021, 22, 294-299.	0.8	8
78	A Quantitative Synthesis of the Efficacy and Profitability of Conventional and Biological Fungicides for Botrytis Fruit Rot Management on Strawberry in Florida. Plant Disease, 2019, 103, 2505-2511.	0.7	7
79	First Report of <i>Sclerotinia sclerotiorum</i> Causing Strawberry Fruit Rot in Florida. Plant Disease, 2020, 104, 3250-3250.	0.7	7
80	Efficacy of metam potassium on <i>Fusarium oxysporum</i> , <i>Macrophomina phaseolina</i> , <i>Meloidogyne javanica</i> , and seven weed species in microcosm experiments. Pest Management Science, 2021, 77, 869-876.	1.7	7
81	Development of a Multiplex High-Throughput Diagnostic Assay for the Detection of Strawberry Crown Rot Diseases Using High-Resolution Melting Analysis. Phytopathology, 2021, 111, 1470-1483.	1.1	7
82	First Report of Powdery Mildew Caused by Golovinomyces cichoracearum on Coreopsis leavenworthii. Plant Health Progress, 2006, 7, 44.	0.8	6
83	Validation of a Florida Strawberry Anthracnose Fruit Rot (AFR) Warning System in Iowa. Plant Disease, 2019, 103, 28-33.	0.7	6
84	Strawberry crop termination, weed control and Macrophomina phaseolina inoculum control with metam potassium at season end. Crop Protection, 2020, 135, 105207.	1.0	6
85	Effect of Water Stress on Reproduction and Colonization of <i>Podosphaera aphanis</i> of Strawberry. Plant Disease, 2020, 104, 2973-2978.	0.7	6
86	Effect of Planting Density on the Yield and Growth of Intercropped Tomatoes and Peppers in Florida. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 286-290.	0.5	6
87	The Use of Aerated Steam as a Heat Treatment for Managing Angular Leaf Spot in Strawberry Nursery Production and Its Effect on Plant Yield. PhytoFrontiers, 2021, 1, 104-119.	0.8	6
88	Multilocus Phylogenetic Analyses of <i>Colletotrichum gloeosporioides</i> Species Complex Causing Crown Rot on Strawberry in Florida. Phytopathology, 2022, 112, 898-906.	1.1	6
89	Phytophthora Crown Rot of Strawberry. Edis, 2020, 2019, 3.	0.0	6
90	Fungicide Dip Treatments for Management of <i>Botrytis cinerea</i> Infection on Strawberry Transplants. Plant Health Progress, 2018, 19, 279-283.	0.8	5

#	Article	IF	CITATIONS
91	Physical, Cultural, and Chemical Alternatives for Integrated Management of Charcoal Rot of Strawberry. Plant Disease, 2021, 105, 295-304.	0.7	5
92	UF 4412 and UF 4424—Red Lance-leaved Caladium Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 239-244.	0.5	5
93	Steam-based thermotherapy for managing nematodes in strawberry transplants. Journal of Nematology, 2020, 52, 1-10.	0.4	5
94	Design, Construction, and Evaluation of Equipment for Nighttime Applications of UV-C for Management of Strawberry Powdery Mildew in Florida and California. Plant Health Progress, 2022, 23, 321-327.	0.8	5
95	Resistance of strawberry cultivars and the effects of plant ontogenesis on <i>Phytophthora cactorum</i> and <i> P. nicotianae</i> causing crown rot. Plant Disease, 0, , .	0.7	5
96	Effect of Timing of Preharvest Fungicide Applications on Postharvest Botrytis Fruit Rot of Annual Strawberries in Florida. Plant Health Progress, 2009, 10, .	0.8	4
97	Evaluation of Low-maintenance Landscape Roses in Central Florida. HortTechnology, 2013, 23, 252-257.	0.5	4
98	Powdery Mildew of Strawberries. Edis, 2013, 2013, .	0.0	4
99	Evaluation of disease alert systems for postbloom fruit drop of citrus in Florida and economic impact of adopting the Citrus Advisory System. Crop Protection, 2022, 155, 105906.	1.0	4
100	Sensory and Physicochemical Quality, Residual Fungicide Levels and Microbial Load in â€~Florida Radiance' Strawberries from Different Disease Control Treatments Exposed to Simulated Supply Chain Conditions. Foods, 2021, 10, 1442.	1.9	3
101	Chapter 16. Strawberry Production. Edis, 0, , .	0.0	3
102	Cultivar Selection Is an Effective and Economic Strategy for Managing Charcoal Rot of Strawberry in Florida. Plant Disease, 2021, 105, 2071-2077.	0.7	3
103	â€~UF-404'—Dwarf, Red Caladium for Container-forcing and Sunny Landscapes. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1907-1910.	0.5	3
104	â€~UF-172', a Pink Fancy-leaved Caladium Cultivar for Large Containers and Landscapes. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 132-134.	0.5	3
105	â€ [~] Florida Radiance' Strawberry. Edis, 2013, 2013, .	0.0	3
106	Charcoal Rot of Strawberries Caused by Macrophomina phaseolina. Edis, 2018, 2018, .	0.0	3
107	Validation of the Strawberry Advisory System in the Mid-Atlantic Region. Plant Disease, 2021, 105, 2670-2679.	0.7	3
108	â€~Cranberry Star'—A Fancy-leaved Caladium for Containers and Shady Landscapes. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 252-254.	0.5	3

#	Article	IF	CITATIONS
109	Additive Genetic Effects for Resistance to Foliar Powdery Mildew in Strawberry Revealed through Divergent Selection. Journal of the American Society for Horticultural Science, 2014, 139, 310-316.	0.5	3
110	Botrytis Fruit Rot or Gray Mold of Strawberry. Edis, 2018, 2018, .	0.0	3
111	Screening for Susceptibility to Anthracnose Stem Lesions in Southern Highbush Blueberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 920-924.	0.5	2
112	First Report of Sour Rot of Strawberry Caused by <i>Geotrichum candidum</i> in the United States. Plant Disease, 2021, 105, 225.	0.7	2
113	High Efficacy and Low Risk of Phytotoxicity of Sulfur in the Suppression of Strawberry Powdery Mildew. Plant Health Progress, 2021, 22, 101-107.	0.8	2
114	First Report of <i>Diaporthe phaseolorum</i> Causing Stem Canker of Hemp (<i>Cannabis sativa</i>). Plant Disease, 2021, 105, 2018.	0.7	2
115	â€~UF-331' and â€~UF-340': New Dwarf Caladium Cultivars for Landscape and Pot Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 2231-2235.	0.5	2
116	Caladium Cultivars Cosmic Delight, Fiesta, and Hearts Desire. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 766-771.	0.5	2
117	â€~Sea Foam Pink' Caladium. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1637-1640.	0.5	2
118	Purple Nutsedge Management in Florida Strawberry with Herbicides and a Modified Florida 3-Way Fumigation Program. HortTechnology, 2020, 30, 433-436.	0.5	2
119	First Report of <i>Curvularia pseudobrachyspora</i> Causing Leaf Spot on Hemp (<i>Cannabis) Tj ETQq1 1 0.784</i>	-314 rgBT 0.7	/Qverlock 10
120	Feeding Selectivity of <i>Aphelenchoides besseyi</i> and <i>A. pseudogoodeyi</i> on Fungi Associated with Florida Strawberry. Plant Disease, 2022, 106, 1929-1934.	0.7	2
121	Sensitivity of <i>Colletotrichum acutatum</i> Species Complex from Strawberry to Fungicide Alternatives to Quinone-Outside Inhibitors. Plant Disease, 2022, 106, 2053-2059.	0.7	2
122	<i>Pseudocercospora pancratii</i> Causing Leaf Spots on Commercial Blackberry (<i>Rubus</i> sp.) in Florida. Plant Disease, 2023, 107, 131-135.	0.7	2
123	Effectiveness of a Low-volume Spray Technology in the Control of Major Strawberry Diseases in Florida. Plant Health Progress, 2016, 17, 245-249.	0.8	1
124	Economic performance and comparative riskiness of different management practices for control of botrytis fruit rot in florida strawberry. Crop Protection, 2016, 82, 82-90.	1.0	1
125	Development of a Wireless Sensor Network for Field Level Strawberry Disease Alert Systems. Applied Engineering in Agriculture, 2021, 37, 183-192.	0.3	1
126	Two New Lance-leaved Caladium Cultivars: Pink Panther and Crimson Skye. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 853-859.	0.5	1

#	Article	IF	CITATIONS
127	Growing Strawberries in the Florida Home Garden. Edis, 2021, 2021, .	0.0	1
128	First Report of <i>Botrytis cinerea</i> Causing Leaf Spot on Strawberry in Florida. Plant Disease, 2022, 106, 1298.	0.7	1
129	Techniques to Evaluate Caladium Cultivars for Host Resistance to Fusarium Tuber Rot. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1001D-1002.	0.5	1
130	How to Avoid Common Problems with Leaf Wetness Sensor Installation and Maintenance. Edis, 2020, 2020, .	0.0	1
131	Pestalotia Leaf Spot and Fruit Rot of Strawberry. Edis, 2020, 2020, .	0.0	1
132	Leaf Spot Diseases of Strawberry. Edis, 2020, 2020, .	0.0	1
133	UV-Transmitting Plastics Reduce Powdery Mildew in Strawberry Tunnel Production. Plant Disease, 2022, 106, 2455-2461.	0.7	1
134	First Report of Leaf Rust on Blackberry (<i>Rubus</i> spp.) Caused by <i>Kuehneola uredinis</i> in Florida. Plant Disease, 2022, 106, 2528.	0.7	1
135	A reassessment of the fungicidal efficacy of 1,3â€dichloropropene, chloropicrin, and metam potassium against <i>Macrophomina phaseolina</i> in strawberry. Pest Management Science, 2022, , .	1.7	1
136	Use of Dehydrated Agar to Estimate Microbial Water Quality for Horticulture Irrigation. Journal of Environmental Quality, 2016, 45, 1445-1451.	1.0	0
137	â€~Icicle': A White Lance-leaved Caladium Cultivar for Containers and Shady Landscapes. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1076-1079.	0.5	0
138	A Design and Development Experience of an Internet of Things Platform to Monitor Site-Specific Weather Conditions at the Farm Level. Applied Engineering in Agriculture, 2021, 37, 691-700.	0.3	0
139	2021–2022 Florida Citrus Production Guide: Citrus Black Spot. Edis, 0, , .	0.0	0
140	Chapter 19. Biopesticides and Alternative Disease and Pest Management Products. Edis, 0, , .	0.0	0
141	Relay Cropping Bell Pepper and Tomato: Effects of Cropping Sequence and Transplanting Date. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 915-921.	0.5	0
142	Florida Plant Diagnostic Network. Edis, 2006, 2006, .	0.0	0
143	â€~UF 432' and â€~UF 4015'—Two Lance-leaved Caladium Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 1099-1103.	0.5	0
144	â€~Florida Beauty' Strawberry. Edis, 2018, 2017, .	0.0	0

9

#	Article	IF	CITATIONS
145	'Florida Brilliance' Strawberry. Edis, 2018, 2018, .	0.0	Ο
146	Citrus Diseases Exotic to Florida: Black Spot. Edis, 2005, 2005, .	0.0	0
147	The UF/IFAS Strawberry Clean Plant Program. Edis, 2020, 2019, .	0.0	0
148	Mancha Negra de los Citricos. Edis, 2020, 2020, .	0.0	0
149	2020–2021 Florida Citrus Production Guide: Citrus Black Spot. Edis, 0, , .	0.0	0
150	2020–2021 Florida Citrus Production Guide: Postbloom Fruit Drop. Edis, 0, , .	0.0	0
151	Viral Diseases of Strawberry. Edis, 2021, 2021, .	0.0	Ο
152	Caladium Cultivars â€~Pink Panther' and â€~Crimson Skye'. Edis, 2021, 2021, .	0.0	0
153	Evaluation of a multi-model approach to estimate leaf wetness duration: an essential input for disease alert systems. Theoretical and Applied Climatology, 0, , 1.	1.3	0
154	Four New Caladium Cultivars, UF-R1410, UF-15-21, UF-15-441, and UF-16-597, for Containers and Landscapes. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 665-673.	0.5	0