Anna Maria Mastrangelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specialized metabolites: Physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management. Plant Physiology and Biochemistry, 2022, 172, 48-55.	5.8	36
2	Editorial: Advances in Breeding for Quantitative Disease Resistance. Frontiers in Plant Science, 2022, 13, 890002.	3.6	1
3	Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection—A Review. Molecules, 2021, 26, 2174.	3.8	17
4	Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. International Journal of Molecular Sciences, 2021, 22, 5423.	4.1	11
5	Importance of Landraces in Cereal Breeding for Stress Tolerance. Plants, 2021, 10, 1267.	3.5	54
6	What Makes Bread and Durum Wheat Different?. Trends in Plant Science, 2021, 26, 677-684.	8.8	34
7	The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. Frontiers in Plant Science, 2020, 11, 569905.	3.6	44
8	Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51, 885-895.	21.4	576
9	Tuning the structure and wetting properties of organic-inorganic nanocomposite coatings prepared by aerosol-assisted atmospheric pressure cold plasma deposition. Surface and Coatings Technology, 2019, 358, 67-75.	4.8	10
10	Genetic Mapping of Loci for Resistance to Stem Rust in a Tetraploid Wheat Collection. International Journal of Molecular Sciences, 2018, 19, 3907.	4.1	20
11	Environmental and Genetic Variation for Yield-Related Traits of Durum Wheat as Affected by Development. Frontiers in Plant Science, 2018, 9, 8.	3.6	31
12	Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. International Journal of Molecular Sciences, 2018, 19, 1662.	4.1	68
13	Genetic dissection of the relationships between grain yield components by genome-wide association mapping in a collection of tetraploid wheats. PLoS ONE, 2018, 13, e0190162.	2.5	85
14	Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Scientific Reports, 2018, 8, 10612.	3.3	45
15	The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics, 2017, 18, 122.	2.8	72
16	Mapping QTL for Root and Shoot Morphological Traits in a Durum Wheat × <i>T. dicoccum</i> Segregating Population at Seedling Stage. International Journal of Genomics, 2017, 2017, 1-17.	1.6	62
17	Association between Grain Size and Shape and Quality Traits, and Path Analysis of Thousand Grain Weight in Iranian Bread Wheat Landraces from Different Geographic Regions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 228-236.	1.1	36
18	Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain. International Journal of Molecular Sciences, 2015, 16, 30382-30404.	4.1	61

#	Article	IF	CITATIONS
19	Conservation of AtTZF1, AtTZF2, and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species. Frontiers in Plant Science, 2015, 6, 394.	3.6	10
20	Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping. Frontiers in Plant Science, 2015, 6, 1033.	3.6	59
21	Post-transcriptional and post-translational regulations of drought and heat response in plants: a spiderââ,¬â,,¢s web of mechanisms. Frontiers in Plant Science, 2015, 6, 57.	3.6	136
22	A highâ€density, <scp>SNP</scp> â€based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnology Journal, 2015, 13, 648-663.	8.3	386
23	Preparation of Multifunctional Superhydrophobic Nanocomposite Coatings by Aerosol-Assisted Atmospheric Cold Plasma Deposition. Nanoscience and Nanotechnology Letters, 2015, 7, 84-88.	0.4	13
24	Genetic analysis of root morphological traits in wheat. Molecular Genetics and Genomics, 2015, 290, 785-806.	2.1	37
25	Integrated views in plant breeding: from the perspective of biotechnology. , 2015, , 467-486.		2
26	Linkage Disequilibrium and Genome-Wide Association Mapping in Tetraploid Wheat (Triticum turgidum) Tj ETQq(0 0 0 rgBT 2.5 rgBT	/Qyerlock 1
27	Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Molecular Breeding, 2014, 34, 1659-1675.	2.1	33
28	Characterization of polyploid wheat genomic diversity using a highâ€density 90Â000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12, 787-796.	8.3	1,828

29	Genetic variation for the duration of pre-anthesis development in durum wheat and its interaction with vernalization treatment and photoperiod. Journal of Experimental Botany, 2014, 65, 3177-3188.	4.8	25
30	A dense durum wheatÂ×ÂT. dicoccum linkage map based on SNP markers for the study of seed morphology. Molecular Breeding, 2014, 34, 1579-1597.	2.1	67
31	The colours of durum wheat: a review. Crop and Pasture Science, 2014, 65, 1.	1.5	142
32	QTLs for barley yield adaptation to Mediterranean environments in the â€~Nure'Â×Ââ€~Tremois' biparen population. Euphytica, 2014, 197, 73-86.	tal 1.2	74
33	Aerosol-Assisted Atmospheric Cold Plasma Deposition and Characterization of Superhydrophobic Organic–Inorganic Nanocomposite Thin Films. Langmuir, 2014, 30, 857-865.	3.5	71
34	Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics, 2013, 14, 562.	2.8	84
35	Molecular mapping of stomatal onductanceâ€related traits inÂdurum wheat (<i>Triticum turgidum</i>) Tj ETQ	q110.78	4314 rgBT

³⁶ Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 2013, 14, 821.

2.8 93

#	Article	IF	CITATIONS
37	Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses. International Journal of Molecular Sciences, 2013, 14, 7302-7326.	4.1	279
38	On the relationship between N management and grain protein content in six durum wheat cultivars in Mediterranean environment. Journal of Plant Interactions, 2013, 8, 271-279.	2.1	12
39	Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data. PLoS ONE, 2013, 8, e67280.	2.5	137
40	Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration À Â. Plant Physiology, 2012, 158, 777-789.	4.8	27
41	A major QTL for resistance to soil-borne cereal mosaic virus derived from an old Italian durum wheat cultivar. Journal of Plant Interactions, 2012, 7, 290-300.	2.1	14
42	A high-density consensus map of A and B wheat genomes. Theoretical and Applied Genetics, 2012, 125, 1619-1638.	3.6	117
43	Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Science, 2012, 185-186, 40-49.	3.6	237
44	Characterization of wheat DArT markers: genetic and functional features. Molecular Genetics and Genomics, 2012, 287, 741-753.	2.1	46
45	Improvement of Drought Resistance in Crops: From Conventional Breeding to Genomic Selection. , 2012, , 225-259.		10
46	Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Molecular Breeding, 2012, 30, 79-92.	2.1	147
47	Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Research, 2012, 125, 49-60.	5.1	56
48	Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. Journal of Cereal Science, 2011, 54, 255-264.	3.7	105
49	Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biology, 2010, 10, 263.	3.6	45
50	Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics, 2010, 10, 2359-2368.	2.2	114
51	Development and characterization of ESTâ€derived SSRs from a â€`totipotent' cDNA library of durum wheat. Plant Breeding, 2010, 129, 715-717.	1.9	5
52	Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Research, 2010, 119, 68-77.	5.1	118
53	Integrated Views in Plant Breeding. , 2009, , 327-354.		4
54	Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics, 2009, 10, 279.	2.8	137

#	Article	IF	CITATIONS
55	Genetic analysis of durable resistance against leaf rust in durum wheat. Molecular Breeding, 2009, 24, 25-39.	2.1	41
56	Mapping adaptation of barley to droughted environments. Euphytica, 2008, 161, 35-45.	1.2	44
57	Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription. Plant Science, 2008, 174, 420-431.	3.6	243
58	Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 2008, 105, 1-14.	5.1	1,122
59	Durum wheat genes up-regulated in the early phases of cold stress are modulated by drought in a developmental and genotype dependent manner. Plant Science, 2007, 172, 1005-1016.	3.6	36
60	Effects of breeding activity on durum wheat traits breed in Italy during the 20th century. Italian Journal of Agronomy, 2007, 2, 451.	1.0	7
61	Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment. Italian Journal of Agronomy, 2007, 2, 291.	1.0	7
62	The Transcript Levels of two Plant Mitochondrial Uncoupling Protein (pUCP)-Related Genes are not Affected by Hyperosmotic Stress in Durum Wheat Seedlings Showing an Increased Level of pUCP Activity. Bioscience Reports, 2006, 26, 251-261.	2.4	12
63	The E3 Ubiquitin Ligase Gene Family in Plants: Regulation by Degradation. Current Genomics, 2006, 7, 509-522.	1.6	219
64	Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta, 2005, 221, 705-715.	3.2	58
65	Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 2002, 48, 649-665.	3.9	190
66	The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting, frost tolerance is regulated by different mRNA expression and protein turnover. Plant Science, 2000, 156, 47-54.	3.6	8