
Kwang Ho Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4127987/publications.pdf Version: 2024-02-01

KWANG HO KIM

#	Article	IF	CITATIONS
1	Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 2018, 20, 809-815.	9.0	235
2	Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel, 2014, 128, 170-179.	6.4	199
3	Pyrolytic Sugars from Cellulosic Biomass. ChemSusChem, 2012, 5, 2228-2236.	6.8	155
4	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	16.4	141
5	Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Applied Sciences (Switzerland), 2020, 10, 4626.	2.5	112
6	Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. Journal of Analytical and Applied Pyrolysis, 2011, 92, 2-9.	5.5	97
7	Investigation of a Lignin-Based Deep Eutectic Solvent Using <i>p</i> -Hydroxybenzoic Acid for Efficient Woody Biomass Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 12542-12553.	6.7	83
8	Catalytic transfer hydrogenolysis of ionic liquid processed biorefinery lignin to phenolic compounds. Green Chemistry, 2017, 19, 215-224.	9.0	70
9	Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13816-13824.	7.1	68
10	Hydrogen-Donor-Assisted Solvent Liquefaction of Lignin to Short-Chain Alkylphenols Using a Micro Reactor/Gas Chromatography System. Energy & Fuels, 2014, 28, 6429-6437.	5.1	67
11	The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin. Journal of Analytical and Applied Pyrolysis, 2017, 127, 385-393.	5.5	63
12	Recent Efforts to Prevent Undesirable Reactions From Fractionation to Depolymerization of Lignin: Toward Maximizing the Value From Lignin. Frontiers in Energy Research, 2018, 6, .	2.3	63
13	Biocompatible Choline-Based Deep Eutectic Solvents Enable One-Pot Production of Cellulosic Ethanol. ACS Sustainable Chemistry and Engineering, 2018, 6, 8914-8919.	6.7	63
14	Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 254-263.	5.5	61
15	The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor. Fuel, 2014, 124, 49-56.	6.4	60
16	Rapid room temperature solubilization and depolymerization of polymeric lignin at high loadings. Green Chemistry, 2016, 18, 6012-6020.	9.0	60
17	Quantitative Investigation of Free Radicals in Bioâ€Oil and their Potential Role in Condensedâ€Phase Polymerization. ChemSusChem, 2015, 8, 894-900.	6.8	56
18	Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization. ACS Sustainable Chemistry and Engineering, 2017, 5, 3913-3919.	6.7	55

Kwang Ho Kim

#	Article	IF	CITATIONS
19	Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnology for Biofuels, 2017, 10, 101.	6.2	48
20	Partial oxidative pyrolysis of acid infused red oak using a fluidized bed reactor to produce sugar rich bio-oil. Fuel, 2014, 130, 135-141.	6.4	33
21	Kinetic understanding of the effect of Na and Mg on pyrolytic behavior of lignin using a distributed activation energy model and density functional theory modeling. Green Chemistry, 2019, 21, 1099-1107.	9.0	33
22	Catalytic Effect of Alkali and Alkaline Earth Metals in Lignin Pyrolysis: A Density Functional Theory Study. Energy & Fuels, 2020, 34, 9734-9740.	5.1	32
23	Sustainable biorefinery processes using renewable deep eutectic solvents. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100396.	5.9	28
24	Tandem conversion of lignin to catechols via demethylation and catalytic hydrogenolysis. Industrial Crops and Products, 2021, 159, 113095.	5.2	27
25	Understanding the Effects of Ethylene Glycol-Assisted Biomass Fractionation Parameters on Lignin Characteristics Using a Full Factorial Design and Computational Modeling. ACS Omega, 2019, 4, 16103-16110.	3.5	25
26	Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate. ChemSusChem, 2018, 11, 598-604.	6.8	18
27	Evaluating Protic Ionic Liquid for Woody Biomass One-Pot Pretreatment + Saccharification, Followed by <i>Rhodosporidium toruloides</i> Cultivation. ACS Sustainable Chemistry and Engineering, 2020, 8, 782-791.	6.7	18
28	Biofuels and Chemicals from Lignin Based on Pyrolysis. Biofuels and Biorefineries, 2016, , 263-287.	0.5	13
29	Comparison of Fast Pyrolysis Behavior of Cornstover Lignins Isolated by Different Methods. ACS Sustainable Chemistry and Engineering, 2017, 5, 5657-5661.	6.7	13
30	Enhancing Enzyme-Mediated Hydrolysis of Mechanical Pulps by Deacetylation and Delignification. ACS Sustainable Chemistry and Engineering, 2020, 8, 5847-5855.	6.7	13
31	Integrated Process for the Production of Lactic Acid from Lignocellulosic Biomass: From Biomass Fractionation and Characterization to Chemocatalytic Conversion with Lanthanum(III) Triflate. Industrial & Engineering Chemistry Research, 2020, 59, 10832-10839.	3.7	13
32	Recovery of resin acids from fast pyrolysis of pine. Journal of Analytical and Applied Pyrolysis, 2019, 138, 132-136.	5.5	12
33	The production of lactic acid from chemi-thermomechanical pulps using a chemo-catalytic approach. Bioresource Technology, 2021, 324, 124664.	9.6	12
34	A new approach to zipâ€lignin: 3,4â€dihydroxybenzoate is compatible with lignification. New Phytologist, 2022, 235, 234-246.	7.3	12
35	Stabilization of acid-rich bio-oil by catalytic mild hydrotreating. Environmental Pollution, 2021, 272, 116180.	7.5	11
36	Pyrolysis kinetics and product distribution of α-cellulose: Effect of potassium and calcium impregnation. Renewable Energy, 2022, 181, 329-340.	8.9	11

Kwang Ho Kim

#	Article	IF	CITATIONS
37	Microwave-assisted phenolation of acid-insoluble Klason lignin and its application in adhesion. Green Chemistry, 2022, 24, 2051-2061.	9.0	11
38	Ferric chloride aided peracetic acid pretreatment for effective utilization of sugarcane bagasse. Fuel, 2022, 319, 123739.	6.4	10
39	Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with <i>p</i> â€Hydroxybenzoic Acidâ€Based Deep Eutectic Solvent. ChemSusChem, 2021, 14, 5235-5244.	6.8	9
40	Variety Trial and Pyrolysis Potential of Kenaf Grown in Midwest United States. Bioenergy Research, 2017, 10, 36-49.	3.9	8
41	Deep Eutectic Solvent Pretreatment of Transgenic Biomass With Increased C6C1 Lignin Monomers. Frontiers in Plant Science, 2019, 10, 1774.	3.6	8
42	Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. Waste Management, 2022, 144, 41-48.	7.4	7
43	Parahydrogen-induced polarization in the hydrogenation of lignin-derived phenols using Wilkinson's catalyst. Fuel, 2019, 255, 115845.	6.4	6
44	The use of steam pretreatment to enhance pellet durability and the enzyme-mediated hydrolysis of pellets to fermentable sugars. Bioresource Technology, 2022, 347, 126731.	9.6	4
45	Influence of hydrocracking and ionic liquid pretreatments on composition and properties of Arabidopsis thaliana wild type and CAD mutant lignins. Renewable Energy, 2020, 152, 1241-1249.	8.9	3
46	Strategy for Extending the Stability of Bioâ€oilâ€Derived Phenolic Oligomers by Mild Hydrotreatment with Ionicâ€Liquidâ€Stabilized Nanoparticles. ChemSusChem, 2017, 10, 884-893.	6.8	2
47	Tailoring Lignin Structure to Maximize the Value from Lignin. ACS Symposium Series, 2021, , 13-36.	0.5	0
48	Editorial on Special Issue "Biorefinery: Current Status, Challenges, and New Strategies― Applied Sciences (Switzerland), 2021, 11, 4674.	2.5	0