
Claus-Peter Witte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4127914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Nucleosides and Nucleotides in Plants: An Update on Sample Preparation and LC–MS Techniques. Cells, 2021, 10, 689.	4.1	10
2	Loss of MAR1 Function is a Marker for Co-Selection of CRISPR-Induced Mutations in Plants. Frontiers in Genome Editing, 2021, 3, 723384.	5.2	9
3	Enhanced nucleotide analysis enables the quantification of deoxynucleotides in plants and algae revealing connections between nucleoside and deoxynucleoside metabolism. Plant Cell, 2021, 33, 270-289.	6.6	23
4	Structural basis for the substrate specificity and catalytic features of pseudouridine kinase from Arabidopsis thaliana. Nucleic Acids Research, 2021, 49, 491-503.	14.5	9
5	Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase. Nature Communications, 2021, 12, 6846.	12.8	10
6	Rapid Affinity Purification of Tagged Plant Mitochondria (Mito-AP) for Metabolome and Proteome Analyses. Plant Physiology, 2020, 182, 1194-1210.	4.8	42
7	A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. Plant Cell, 2020, 32, 722-739.	6.6	22
8	Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1. Plant Cell, 2020, 32, 1610-1625.	6.6	33
9	Nucleotide Metabolism in Plants. Plant Physiology, 2020, 182, 63-78.	4.8	78
10	A Link between Deoxyribonucleotide Metabolites and Embryonic Cell-Cycle Control. Current Biology, 2019, 29, 1187-1192.e3.	3.9	27
11	AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex. Plant Cell, 2019, 31, 734-751.	6.6	29
12	Crystal structure and mutational analyses of ribokinase from Arabidopsis thaliana. Journal of Structural Biology, 2019, 206, 110-118.	2.8	6
13	Functions and Dynamics of Methylation in Eukaryotic mRNA. RNA Technologies, 2019, , 333-351.	0.3	0
14	The ribokinases of <i>Arabidopsis thaliana</i> and <i>Saccharomyces cerevisiae</i> are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress. New Phytologist, 2018, 217, 233-244.	7.3	21
15	m ⁶ A RNA Degradation Products Are Catabolized by an Evolutionarily Conserved N ⁶ -Methyl-AMP Deaminase in Plant and Mammalian Cells. Plant Cell, 2018, 30, 1511-1522.	6.6	45
16	The assembly of the plant urease activation complex and the essential role of the urease accessory protein G (UreG) in delivery of nickel to urease. Journal of Biological Chemistry, 2017, 292, 14556-14565.	3.4	28
17	Coprophagous features in carnivorous Nepenthes plants: a task for ureases. Scientific Reports, 2017, 7, 11647.	3.3	12
18	Of the nine cytidine deaminase like genes in Arabidopsis thaliana eight are pseudogenes and only one is required to maintain pyrimidine homeostasis in vivo. Plant Physiology, 2016, 171, pp.02031.2015.	4.8	26

CLAUS-PETER WITTE

#	Article	IF	CITATIONS
19	Uric Acid Accumulation in an <i>Arabidopsis</i> Urate Oxidase Mutant Impairs Seedling Establishment by Blocking Peroxisome Maintenance. Plant Cell, 2014, 26, 3090-3100.	6.6	46
20	Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8744-8749.	7.1	585
21	The Ureide-Degrading Reactions of Purine Ring Catabolism Employ Three Amidohydrolases and One Aminohydrolase in Arabidopsis, Soybean, and Rice. Plant Physiology, 2013, 163, 672-681.	4.8	50
22	Plant Purine Nucleoside Catabolism Employs a Guanosine Deaminase Required for the Generation of Xanthosine in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 4101-4109.	6.6	44
23	Urea metabolism in plants. Plant Science, 2011, 180, 431-438.	3.6	336
24	The biochemistry of nitrogen mobilization: purine ring catabolism. Trends in Plant Science, 2011, 16, 381-387.	8.8	181
25	Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nature Chemical Biology, 2010, 6, 19-21.	8.0	79
26	Identification and Characterization of Proteins Involved in Rice Urea and Arginine Catabolism Â. Plant Physiology, 2010, 154, 98-108.	4.8	48
27	Tobacco Calcium-dependent Protein Kinases Are Differentially Phosphorylated in Vivo as Part of a Kinase Cascade That Regulates Stress Response. Journal of Biological Chemistry, 2010, 285, 9740-9748.	3.4	81
28	Interaction between SGT1 and Cytosolic/Nuclear HSC70 Chaperones Regulates <i>Arabidopsis</i> Immune Responses. Plant Cell, 2008, 19, 4061-4076.	6.6	187
29	Identification, Biochemical Characterization, and Subcellular Localization of Allantoate Amidohydrolases from Arabidopsis and Soybean. Plant Physiology, 2008, 146, 323-324.	4.8	91
30	Identification of Three Urease Accessory Proteins That Are Required for Urease Activation in Arabidopsis. Plant Physiology, 2005, 139, 1155-1162.	4.8	68
31	Analysis of two alleles of the urease gene from potato: polymorphisms, expression, and extensive alternative splicing of the corresponding mRNA. Journal of Experimental Botany, 2004, 56, 91-9.	4.8	23
32	Identification, cloning and expression analysis of strawberry (Fragaria x ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase. Physiologia Plantarum, 2004, 121, 15-26.	5.2	39
33	Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 2004, 55, 135-147.	3.9	178
34	Stable isotope labeling of phosphopeptides for multiparallel kinase target analysis and identification of phosphorylation sites. Rapid Communications in Mass Spectrometry, 2003, 17, 1579-1584.	1.5	45
35	Mcp1 Encodes the Molybdenum Cofactor Carrier Protein in Chlamydomonas reinhardtii and Participates in Protection, Binding, and Storage Functions of the Cofactor. Journal of Biological Chemistry, 2003, 278, 10885-10890.	3.4	50
36	Leaf Urea Metabolism in Potato. Urease Activity Profile and Patterns of Recovery and Distribution of 15N after Foliar Urea Application in Wild-Type and Urease-Antisense Transgenics. Plant Physiology, 2002, 128, 1129-1136.	4.8	112

#	Article	IF	CITATIONS
37	Title is missing!. Plant Cell, Tissue and Organ Culture, 2002, 68, 103-104.	2.3	32
38	In-Gel Detection of Urease with Nitroblue Tetrazolium and Quantification of the Enzyme from Different Crop Plants Using the Indophenol Reaction. Analytical Biochemistry, 2001, 290, 102-107.	2.4	64
39	Functional characterisation of urease accessory protein G (ureG) from potato. Plant Molecular Biology, 2001, 45, 169-179.	3.9	26
40	Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13778-13783.	7.1	196
41	TheChlamydomonas reinhardtiiMoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. FEBS Letters, 1998, 431, 205-209.	2.8	54