Patrick S C Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/412705/publications.pdf

Version: 2024-02-01

147 papers 8,365 citations

52 h-index 85 g-index

148 all docs 148 docs citations

148 times ranked 6603 citing authors

#	Article	IF	CITATIONS
1	E. coli and the etiology of human PBC: Antimitochondrial antibodies and spreading determinants. Hepatology, 2022, 75, 266-279.	7.3	18
2	Effect of LncRNA XIST on Immune Cells of Primary Biliary Cholangitis. Frontiers in Immunology, 2022, 13, 816433.	4.8	6
3	Comprehending the allergen repertoire of shrimp for precision molecular diagnosis of shrimp allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3041-3051.	5 . 7	14
4	Emerging approaches in the diagnosis and therapy in shellfish allergy. Current Opinion in Allergy and Clinical Immunology, 2022, 22, 202-212.	2.3	7
5	Cell-Based Functional IgE Assays Are Superior to Conventional Allergy Tests for Shrimp Allergy Diagnosis. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 236-244.e9.	3 . 8	23
6	Ursodeoxycholic acid impairs liverâ€infiltrating Tâ€cell chemotaxis through IFNâ€Î³ and CX3CL1 production in primary biliary cholangitis. European Journal of Immunology, 2021, 51, 1519-1530.	2.9	10
7	Enoxacin Upâ€Regulates MicroRNA Biogenesis and Downâ€Regulates Cytotoxic CD8 Tâ€Cell Function in Autoimmune Cholangitis. Hepatology, 2021, 74, 835-846.	7.3	11
8	Interleukin 23 Produced by Hepatic Monocyte-Derived Macrophages Is Essential for the Development of Murine Primary Biliary Cholangitis. Frontiers in Immunology, 2021, 12, 718841.	4.8	8
9	Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. Journal of Experimental Medicine, 2021, 218, .	8.5	20
10	Glycan biomarkers of autoimmunity and bile acid-associated alterations of the human glycome: Primary biliary cirrhosis and primary sclerosing cholangitis-specific glycans. Clinical Immunology, 2021, 230, 108825.	3.2	2
11	T-Cell Epitope Immunotherapy in Mouse Models of Food Allergy. Methods in Molecular Biology, 2021, 2223, 337-355.	0.9	2
12	The Pathogenesis of Primary Biliary Cholangitis: A Comprehensive Review. Seminars in Liver Disease, 2020, 40, 034-048.	3.6	76
13	Cholangiocarcinoma in Patients with Primary Sclerosing Cholangitis (PSC): a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2020, 58, 134-149.	6.5	49
14	Clinical Management of Primary Biliary Cholangitis—Strategies and Evolving Trends. Clinical Reviews in Allergy and Immunology, 2020, 59, 175-194.	6.5	23
15	Recurrence of disease following organ transplantation in autoimmune liver disease and systemic lupus erythematosus. Cellular Immunology, 2020, 347, 104021.	3.0	9
16	Glycomic analysis of antibody indicates distinctive glycosylation profile in patients with autoimmune cholangitis. Journal of Autoimmunity, 2020, 113, 102503.	6.5	5
17	Extracellular vesicles microRNA analysis in type 1 autoimmune pancreatitis: Increased expression of microRNA-21. Pancreatology, 2020, 20, 318-324.	1.1	15
18	Overcoming Shellfish Allergy: How Far Have We Come?. International Journal of Molecular Sciences, 2020, 21, 2234.	4.1	44

#	Article	IF	CITATIONS
19	Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2020, 58, 252-271.	6.5	16
20	Multi-omics: Differential expression of IFN- \hat{l}^3 results in distinctive mechanistic features linking chronic inflammation, gut dysbiosis, and autoimmune diseases. Journal of Autoimmunity, 2020, 111, 102436.	6.5	25
21	Primary Biliary Cholangitis. , 2020, , 335-357.		1
22	Mimotope-based allergen-specific immunotherapy: ready for prime time?. Cellular and Molecular Immunology, 2019, 16, 890-891.	10.5	4
23	DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology. Journal of Autoimmunity, 2019, 102, 167-178.	6.5	14
24	Principles of Allergen Immunotherapy and Its Clinical Application in China: Contrasts and Comparisons with the USA. Clinical Reviews in Allergy and Immunology, 2019, 57, 128-143.	6.5	13
25	Modulating Shrimp Tropomyosin-Mediated Allergy: Hypoallergen DNA Vaccines Induce Regulatory T Cells to Reduce Hypersensitivity in Mouse Model. International Journal of Molecular Sciences, 2019, 20, 4656.	4.1	15
26	Definition of Allergens: Inhalants, Food, and Insects Allergens. , 2019, , 53-110.		0
27	Proteomics in Primary Biliary Cholangitis. Methods in Molecular Biology, 2019, 1981, 163-173.	0.9	1
28	Histologically proven AMA positive primary biliary cholangitis but normal serum alkaline phosphatase: Is alkaline phosphatase truly a surrogate marker?. Journal of Autoimmunity, 2019, 99, 33-38.	6.5	37
29	The genetics of primary biliary cholangitis. Current Opinion in Gastroenterology, 2019, 35, 93-98.	2.3	24
30	Microbiota and Food Allergy. Clinical Reviews in Allergy and Immunology, 2019, 57, 83-97.	6.5	98
31	Definition of Allergens: Inhalants, Food, and Insects Allergens. , 2019, , 1-58.		1
32	Regional Differences in Food Allergies. Clinical Reviews in Allergy and Immunology, 2019, 57, 98-110.	6.5	22
33	Immunotherapy of Food Allergy: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2019, 57, 55-73.	6.5	38
34	Therapeutic and immunological interventions in primary biliary cholangitis: from mouse models to humans. Archives of Medical Science, 2018, 14, 930-940.	0.9	3
35	The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7. Journal of Autoimmunity, 2018, 90, 64-75.	6.5	50
36	Proteomic analysis reveals distinctive protein profiles involved in CD8+ T cell-mediated murine autoimmune cholangitis. Cellular and Molecular Immunology, 2018, 15, 756-767.	10.5	9

#	Article	IF	CITATIONS
37	The Clinical Significance of GP73 in Immunologically Mediated Chronic Liver Diseases: Experimental Data and Literature Review. Clinical Reviews in Allergy and Immunology, 2018, 54, 282-294.	6.5	36
38	The molecular basis of immune regulation in autoimmunity. Clinical Science, 2018, 132, 43-67.	4.3	20
39	Environmental basis of primary biliary cholangitis. Experimental Biology and Medicine, 2018, 243, 184-189.	2.4	32
40	How the biliary tree maintains immune tolerance?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1367-1373.	3.8	13
41	The interplay of type I and type II interferons in murine autoimmune cholangitis as a basis for sexâ€biased autoimmunity. Hepatology, 2018, 67, 1408-1419.	7. 3	45
42	Common Variable Immunodeficiency and Liver Involvement. Clinical Reviews in Allergy and Immunology, 2018, 55, 340-351.	6.5	58
43	Endogenous IL-10 maintains immune tolerance but IL-10 gene transfer exacerbates autoimmune cholangitis. Journal of Autoimmunity, 2018, 95, 159-170.	6.5	13
44	Molecular mimicry and autoimmunity. Journal of Autoimmunity, 2018, 95, 100-123.	6.5	353
45	Anti-drug Antibodies Against a Novel Humanized Anti-CD20 Antibody Impair Its Therapeutic Effect on Primary Biliary Cholangitis in Human CD20- and FcγR-Expressing Mice. Frontiers in Immunology, 2018, 9, 2534.	4.8	9
46	Diagnosis of fish and shellfish allergies. Journal of Asthma and Allergy, 2018, Volume 11, 247-260.	3.4	39
47	The Critical Role of Chemokine (C–C Motif) Receptor 2-Positive Monocytes in Autoimmune Cholangitis. Frontiers in Immunology, 2018, 9, 1852.	4.8	13
48	Evolution of our understanding of PBC. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2018, 34-35, 3-9.	2.4	29
49	The Genetics and Epigenetics of Primary Biliary Cholangitis. Clinics in Liver Disease, 2018, 22, 443-455.	2.1	27
50	The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cellular and Molecular Immunology, 2017, 14, 276-284.	10.5	51
51	Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cellular and Molecular Immunology, 2017, 14, 308-318.	10.5	34
52	The fingerprint of antimitochondrial antibodies and the etiology of primary biliary cholangitis. Hepatology, 2017, 65, 1670-1682.	7.3	33
53	Autoreactive monoclonal antibodies from patients with primary biliary cholangitis recognize environmental xenobiotics. Hepatology, 2017, 66, 885-895.	7. 3	25
54	Low-Dose Allergen-Specific Immunotherapy Induces Tolerance in a Murine Model of Shrimp Allergy. International Archives of Allergy and Immunology, 2017, 174, 86-96.	2.1	19

#	Article	IF	CITATIONS
55	Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmunity Reviews, 2017, 16, 885-896.	5.8	158
56	Toward solving the etiological mystery of primary biliary cholangitis. Hepatology Communications, 2017, 1, 275-287.	4.3	28
57	Stem Cell Therapy in the Treatment of Rheumatic Diseases and Application in the Treatment of Systemic Lupus Erythematosus., 2017,, 167-198.		2
58	Chronic expression of interferonâ€gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology, 2016, 64, 1189-1201.	7.3	93
59	Autotaxin, Pruritus and Primary Biliary Cholangitis (PBC). Autoimmunity Reviews, 2016, 15, 795-800.	5.8	31
60	Environmental Basis of Autoimmunity. Clinical Reviews in Allergy and Immunology, 2016, 50, 287-300.	6.5	92
61	Adaptive immunity in the liver. Cellular and Molecular Immunology, 2016, 13, 354-368.	10.5	78
62	Chemokine and chemokine receptors in autoimmunity: the case of primary biliary cholangitis. Expert Review of Clinical Immunology, 2016, 12, 661-672.	3.0	48
63	A contemporary perspective on the molecular characteristics of mitochondrial autoantigens and diagnosis in primary biliary cholangitis. Expert Review of Molecular Diagnostics, 2016, 16, 697-705.	3.1	31
64	Xenobiotics and loss of tolerance in primary biliary cholangitis. World Journal of Gastroenterology, 2016, 22, 338.	3.3	15
65	Innate Immunity Drives the Initiation of a Murine Model of Primary Biliary Cirrhosis. PLoS ONE, 2015, 10, e0121320.	2.5	19
66	IL-35 and Autoimmunity: a Comprehensive Perspective. Clinical Reviews in Allergy and Immunology, 2015, 49, 327-332.	6.5	78
67	Extrahepatic Malignancies in Primary Biliary Cirrhosis: A Comparative Study at Two European Centers. Clinical Reviews in Allergy and Immunology, 2015, 48, 254-262.	6.5	19
68	Gastrointestinal Immune Response to the Shrimp Allergen Tropomyosin: Histological and Immunological Analysis in an Animal Model of Shrimp Tropomyosin Hypersensitivity. International Archives of Allergy and Immunology, 2015, 167, 29-40.	2.1	26
69	Antiâ€kelchâ€like 12 and antiâ€hexokinase 1: novel autoantibodies in primary biliary cirrhosis. Liver International, 2015, 35, 642-651.	3.9	66
70	Animal Models of Primary Biliary Cirrhosis. Clinical Reviews in Allergy and Immunology, 2015, 48, 142-153.	6.5	55
71	Gene Therapy for Autoimmune Disease. Clinical Reviews in Allergy and Immunology, 2015, 49, 163-176.	6.5	26
72	The autoimmune basis of alopecia areata: A comprehensive review. Autoimmunity Reviews, 2015, 14, 81-89.	5.8	172

#	Article	IF	CITATIONS
73	Animal Models of Primary Biliary Cirrhosis. Seminars in Liver Disease, 2014, 34, 285-296.	3.6	46
74	Xenobiotic Induced Model of Primary Biliary Cirrhosis. Serbian Journal of Experimental and Clinical Research, 2014, 15, 145-150.	0.1	0
75	Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology, 2014, 60, 1708-1716.	7.3	67
76	Stem Cell Therapy in Autoimmune Rheumatic Diseases: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2014, 47, 244-257.	6.5	12
77	Current Immunological and Molecular Biological Perspectives on Seafood Allergy: A Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2014, 46, 180-197.	6.5	89
78	Common Methodologies in the Evaluation of Food Allergy: Pitfalls and Prospects of Food Allergy Prevalence Studies. Clinical Reviews in Allergy and Immunology, 2014, 46, 198-210.	6.5	15
79	IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: Implications for therapy. Hepatology, 2014, 59, 1944-1953.	7.3	168
80	The Changing Geoepidemiology of Food Allergies. Clinical Reviews in Allergy and Immunology, 2014, 46, 169-179.	6.5	16
81	Shotgun proteomics: Identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology, 2014, 60, 1314-1323.	7.3	68
82	Murine autoimmune cholangitis requires two hits: Cytotoxic KLRG1+ CD8 effector cells and defective T regulatory cells. Journal of Autoimmunity, 2014, 50, 123-134.	6.5	56
83	Immunization with Hypoallergens of Shrimp Allergen Tropomyosin Inhibits Shrimp Tropomyosin Specific IgE Reactivity. PLoS ONE, 2014, 9, e111649.	2.5	48
84	Antimitochondrial antibody heterogeneity and the xenobiotic etiology of primary biliary cirrhosis. Hepatology, 2013, 57, 1498-1508.	7.3	58
85	Antimitochondrial Antibody Recognition and Structural Integrity of the Inner Lipoyl Domain of the E2 Subunit of Pyruvate Dehydrogenase Complex. Journal of Immunology, 2013, 191, 2126-2133.	0.8	30
86	The Implication of Vitamin D and Autoimmunity: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2013, 45, 217-226.	6.5	229
87	Environment and primary biliary cirrhosis: Electrophilic drugs and the induction of AMA. Journal of Autoimmunity, 2013, 41, 79-86.	6.5	55
88	Reply. Hepatology, 2013, 58, 830-830.	7.3	1
89	Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF- \hat{l}^2 receptor type II mouse. Journal of Autoimmunity, 2013, 41, 111-119.	6.5	95
90	Therapeutic effect of cytotoxic T lymphocyte antigen 4/immunoglobulin on a murine model of primary biliary cirrhosis. Hepatology, 2013, 57, 708-715.	7.3	88

#	Article	IF	Citations
91	Clonality, activated antigen-specific CD8 ⁺ T cells, and development of autoimmune cholangitis in dnTGFβRII mice. Hepatology, 2013, 58, 1094-1104.	7.3	43
92	Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGF \hat{l}^2 receptor type II mice. Hepatology, 2013, 57, 806-816.	7.3	81
93	Identification of Potential Cytokine Pathways for Therapeutic Intervention in Murine Primary Biliary Cirrhosis. PLoS ONE, 2013, 8, e74225.	2.5	49
94	Criteria for environmentally associated autoimmune diseases. Journal of Autoimmunity, 2012, 39, 253-258.	6.5	113
95	Mechanisms of environmental influence on human autoimmunity: A national institute of environmental health sciences expert panel workshop. Journal of Autoimmunity, 2012, 39, 272-284.	6.5	151
96	Animal Models of Primary Biliary Cirrhosis: Materials and Methods. Methods in Molecular Biology, 2012, 900, 291-316.	0.9	29
97	The immunobiology of colitis and cholangitis in interleukin-23p19 and interleukin-17a deleted dominant negative form of transforming growth factor beta receptor type ii mice. Hepatology, 2012, 56, 1418-1426.	7.3	35
98	Xenobiotics and autoimmunity: does acetaminophen cause primary biliary cirrhosis?. Trends in Molecular Medicine, 2012, 18, 577-582.	6.7	15
99	Lymphoma-Like T Cell Infiltration in Liver Is Associated with Increased Copy Number of Dominant Negative Form of TGFÎ ² Receptor II. PLoS ONE, 2012, 7, e49413.	2.5	7
100	IgM predominance in autoimmune disease: Genetics and gender. Autoimmunity Reviews, 2012, 11 , A404-A412.	5.8	49
101	The effects of Spirulina on anemia and immune function in senior citizens. Cellular and Molecular Immunology, 2011, 8, 248-254.	10.5	98
102	Electrophile-modified lipoic derivatives of PDC-E2 elicits anti-mitochondrial antibody reactivity. Journal of Autoimmunity, 2011, 37, 209-216.	6.5	44
103	Autoimmune acute liver failure: Proposed clinical and histological criteria. Hepatology, 2011, 53, 517-526.	7.3	245
104	Innate immunity and primary biliary cirrhosis: Activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011, 53, 915-925.	7.3	86
105	Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology, 2011, 53, 1270-1281.	7.3	110
106	Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology, 2011, 54, 196-203.	7.3	60
107	Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology, 2011, 54, 1293-1302.	7.3	53
108	Gene therapy in autoimmune diseases: Challenges and opportunities. Autoimmunity Reviews, 2010, 9, 170-174.	5.8	21

#	Article	IF	CITATIONS
109	Development and validation of gene therapies in autoimmune diseases: Epidemiology to animal models. Autoimmunity Reviews, 2010, 9, A400-A405.	5.8	35
110	Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008, 48, 531-540.	7.3	167
111	Liver Autoimmunity Triggered by Microbial Activation of Natural Killer T Cells. Cell Host and Microbe, 2008, 3, 304-315.	11.0	219
112	Induction of Shrimp Tropomyosin-Specific Hypersensitivity in Mice. International Archives of Allergy and Immunology, 2008, 147, 305-314.	2.1	26
113	Induction of Primary Biliary Cirrhosis in Guinea Pigs following Chemical Xenobiotic Immunization. Journal of Immunology, 2007, 179, 2651-2657.	0.8	92
114	A sensitive bead assay for antimitochondrial antibodies: Chipping away at AMA-negative primary biliary cirrhosis. Hepatology, 2007, 45, 659-665.	7.3	152
115	Antimitochondrial antibodies in acute liver failure: Implications for primary biliary cirrhosis. Hepatology, 2007, 46, 1436-1442.	7.3	109
116	Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. Journal of Autoimmunity, 2006, 27, 7-16.	6.5	160
117	NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. Journal of Experimental Medicine, 2006, 203, 1209-1219.	8.5	173
118	Etiology of Primary Biliary Cirrhosis: The Search for the Culprit. Seminars in Liver Disease, 2005, 25, 327-336.	3.6	27
119	Chemical Xenobiotics and Mitochondrial Autoantigens in Primary Biliary Cirrhosis: Identification of Antibodies against a Common Environmental, Cosmetic, and Food Additive, 2-Octynoic Acid. Journal of Immunology, 2005, 174, 5874-5883.	0.8	176
120	Phylogenetic and immunological definition of four lipoylated proteins from , implications for primary biliary cirrhosis. Journal of Autoimmunity, 2005, 24, 209-219.	6.5	111
121	Xenobiotic-Induced Loss of Tolerance in Rabbits to the Mitochondrial Autoantigen of Primary Biliary Cirrhosis Is Reversible. Journal of Immunology, 2004, 172, 6444-6452.	0.8	73
122	Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology, 2004, 39, 1415-1422.	7.3	93
123	Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Gastroenterology, 2003, 125, 1705-1713.	1.3	82
124	Immunization with a Xenobiotic 6-Bromohexanoate Bovine Serum Albumin Conjugate Induces Antimitochondrial Antibodies. Journal of Immunology, 2003, 170, 5326-5332.	0.8	131
125	Is there a Relation betweenChlamydiaInfection and Primary Biliary Cirrhosis?. Clinical and Developmental Immunology, 2003, 10, 227-233.	3.3	45
126	Evidence for a locally driven mucosal response and the presence of mitochondrial antigens in saliva in primary biliary cirrhosis. Hepatology, 2000, 31, 24-29.	7.3	82

#	Article	IF	Citations
127	Mucosal Immunity and Primary Biliary Cirrhosis: Presence of Antimitochondrial Antibodies in Urine. Hepatology, 2000, 32, 910-915.	7.3	69
128	Comparative Immunoreactivity of Anti-trifluoroacetyl (TFA) Antibody and Anti-lipoic Acid Antibody in Primary Biliary Cirrhosis: Searching for a Mimic. Journal of Autoimmunity, 2000, 15, 51-60.	6.5	25
129	Tropomyosin Is the Major Mollusk Allergen: Reverse Transcriptase Polymerase Chain Reaction, Expression and IgE Reactivity. Marine Biotechnology, 2000, 2, 499-509.	2.4	69
130	Induction and Persistence of Immune-Mediated Cholangiohepatitis in Neonatally Thymectomized Mice. Clinical Immunology and Immunopathology, 1998, 89, 141-149.	2.0	17
131	Characterization of antimitochondrial antibodies in healthy adults. Hepatology, 1998, 27, 656-661.	7.3	136
132	Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen㠆㠆ã * †ã * Journal of Allergy and Clinical Immunology, 1998, 102, 847-852.	2.9	142
133	Molecular and immunological characterization of shellfish allergens. Frontiers in Bioscience - Landmark, 1998, 3, d306-312.	3.0	35
134	Antimitochondrial Antibodies in Primary Biliary Cirrhosis. Seminars in Liver Disease, 1997, 17, 61-69.	3.6	118
135	Persistence of Autoantibodies against Recombinant Mitochondrial and Nuclear Pore Proteins after Orthotopic Liver Transplantation for Primary Biliary Cirrhosis. Journal of Autoimmunity, 1997, 10, 491-497.	6.5	31
136	Clinicopathological study of primary biliary cirrhosis negative for antimitochondrial antibodies. Liver, 1997, 17, 281-287.	0.1	46
137	lgE reactivity against a cross-reactive allergen in crustacea and mollusca: Evidence for tropomyosin as the common allergen. Journal of Allergy and Clinical Immunology, 1996, 98, 954-961.	2.9	230
138	Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression. Hepatology, 1995, 21, 1031-1037.	7. 3	97
139	Autoantibodies to BCOADC-E2 in patients with primary biliary cirrhosis recognize a conformational epitope. Hepatology, 1995, 22, 505-513.	7. 3	86
140	Heterogeneity of combinatorial human autoantibodies against PDC-E2 and biliary epithelial cells in patients with primary biliary cirrhosis. Hepatology, 1994, 20, 574-583.	7.3	44
141	Chromosome Localization and Rflp Analysis of Pdc-E2: the Major Autoantigen of Primary Biliary Cirrhosis. Autoimmunity, 1993, 14, 335-340.	2.6	7
142	Antimitochondrial antibodies in kindreds of patients with primary biliary cirrhosis: Antimitochondrial antibodies are unique to clinical disease and are absent in asymptomatic family members. Hepatology, 1992, 16, 899-905.	7.3	33
143	M4 and M9 antibodies in the overlap syndrome of primary biliary cirrhosis and chronic active hepatitis: Epitopes or epiphenomena?. Hepatology, 1992, 16, 1128-1136.	7.3	67
144	M4 and M9 antibodies in the overlap syndrome of primary biliary cirrhosis and chronic active hepatitis: Epitopes or epiphenomena?. Hepatology, 1992, 16, 1128-1136.	7.3	10

PATRICK S C LEUNG

#	Article	IF	CITATIONS
145	Molecular characterization of the mitochondrial autoantigens in primary biliary cirrhosis. Immunologic Research, 1991, 10, 518-527.	2.9	24
146	Site-directed mutagenesis of lysine within the immunodominant autoepitope of PDC-E2. Hepatology, 1990, 12, 1321-1328.	7.3	54
147	Autoantibodies to mitochondria in systemic sclerosis. frequency and characterization using recombinant cloned autoantigen. Arthritis and Rheumatism, 1988, 31, 386-392.	6.7	43