A Marm Kilpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4125451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environmental Health Perspectives, 2004, 112, 1092-1098.	6.0	740
2	Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet, The, 2012, 380, 1946-1955.	13.7	530
3	Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease. Emerging Infectious Diseases, 2005, 11, 1822-1827.	4.3	487
4	West Nile Virus Epidemics in North America Are Driven by Shifts in Mosquito Feeding Behavior. PLoS Biology, 2006, 4, e82.	5.6	467
5	"Bird biting―mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, Genetics and Evolution, 2011, 11, 1577-1585.	2.3	463
6	Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19368-19373.	7.1	461
7	Host heterogeneity dominates West Nile virus transmission. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2327-2333.	2.6	432
8	West Nile virus emergence and large-scale declines of North American bird populations. Nature, 2007, 447, 710-713.	27.8	413
9	The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution, 2010, 25, 109-118.	8.7	380
10	Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes. PLoS Pathogens, 2008, 4, e1000092.	4.7	362
11	Globalization, Land Use, and the Invasion of West Nile Virus. Science, 2011, 334, 323-327.	12.6	348
12	West Nile Virus Risk Assessment and the Bridge Vector Paradigm. Emerging Infectious Diseases, 2005, 11, 425-429.	4.3	324
13	Sociality, densityâ€dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, whiteâ€nose syndrome. Ecology Letters, 2012, 15, 1050-1057.	6.4	299
14	Densovirus associated with sea-star wasting disease and mass mortality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17278-17283.	7.1	276
15	Frontiers in climate change–disease research. Trends in Ecology and Evolution, 2011, 26, 270-277.	8.7	273
16	Deer, predators, and the emergence of Lyme disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10942-10947.	7.1	244
17	From superspreaders to disease hotspots: linking transmission across hosts and space. Frontiers in Ecology and the Environment, 2012, 10, 75-82.	4.0	237
18	Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biological Conservation, 2009, 142, 1420-1426.	4.1	208

#	Article	IF	CITATIONS
19	Disease alters macroecological patterns of <scp>N</scp> orth <scp>A</scp> merican bats. Global Ecology and Biogeography, 2015, 24, 741-749.	5.8	206
20	The Effect of Temperature on Life History Traits of <i>Culex</i> Mosquitoes. Journal of Medical Entomology, 2014, 51, 55-62.	1.8	197
21	Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142335.	2.6	181
22	Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160117.	4.0	173
23	West Nile Virus and Wildlife. BioScience, 2004, 54, 393.	4.9	166
24	Ecology of West Nile Virus Transmission and its Impact on Birds in the Western Hemisphere. Auk, 2007, 124, 1121-1136.	1.4	164
25	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	4.0	147
26	Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biological Conservation, 2004, 120, 115-119.	4.1	136
27	ECOLOGY OF WEST NILE VIRUS TRANSMISSION AND ITS IMPACT ON BIRDS IN THE WESTERN HEMISPHERE. Auk, 2007, 124, 1121.	1.4	135
28	Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nature Microbiology, 2017, 2, 16197.	13.3	121
29	Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome. PLoS ONE, 2015, 10, e0121329.	2.5	120
30	Nipah virus dynamics in bats and implications for spillover to humans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29190-29201.	7.1	119
31	Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162078.	2.6	114
32	Transmission of Nipah Virus — 14 Years of Investigations in Bangladesh. New England Journal of Medicine, 2019, 380, 1804-1814.	27.0	114
33	Ecology and impacts of white-nose syndrome on bats. Nature Reviews Microbiology, 2021, 19, 196-210.	28.6	107
34	Ecology of avian influenza viruses in a changing world. Annals of the New York Academy of Sciences, 2010, 1195, 113-128.	3.8	106
35	Pathogen dynamics during invasion and establishment of whiteâ€nose syndrome explain mechanisms of host persistence. Ecology, 2017, 98, 624-631.	3.2	100
36	Conservation of biodiversity as a strategy for improving human health and well-being. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160131.	4.0	99

#	Article	IF	CITATIONS
37	Drivers of variation in species impacts for a multi-host fungal disease of bats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150456.	4.0	92
38	Spatial and Temporal Variation in Vector Competence of Culex pipiens and Cx. restuans Mosquitoes for West Nile Virus. American Journal of Tropical Medicine and Hygiene, 2010, 83, 607-613.	1.4	88
39	Invasion Dynamics of White-Nose Syndrome Fungus, Midwestern United States, 2012–2014. Emerging Infectious Diseases, 2015, 21, 1023-1026.	4.3	88
40	Predicting Pathogen Introduction: West Nile Virus Spread to Galápagos. Conservation Biology, 2006, 20, 1224-1231.	4.7	87
41	Merging Economics and Epidemiology to Improve the Prediction and Management of Infectious Disease. EcoHealth, 2014, 11, 464-475.	2.0	87
42	Genetic Influences on Mosquito Feeding Behavior and the Emergence of Zoonotic Pathogens. American Journal of Tropical Medicine and Hygiene, 2007, 77, 667-671.	1.4	87
43	Resistance in persisting bat populations after white-nose syndrome invasion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160044.	4.0	86
44	Conservation Medicine and a New Agenda for Emerging Diseases. Annals of the New York Academy of Sciences, 2004, 1026, 1-11.	3.8	82
45	Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Frontiers in Microbiology, 2016, 7, 1753.	3.5	81
46	Predicting Human West Nile Virus Infections With Mosquito Surveillance Data. American Journal of Epidemiology, 2013, 178, 829-835.	3.4	77
47	Convergence of Humans, Bats, Trees, and Culture in Nipah Virus Transmission, Bangladesh. Emerging Infectious Diseases, 2017, 23, 1446-1453.	4.3	76
48	Facilitating the evolution of resistance to avian malaria in Hawaiian birds. Biological Conservation, 2006, 128, 475-485.	4.1	72
49	Wildlife–livestock conflict: the risk of pathogen transmission from bison to cattle outside Yellowstone National Park. Journal of Applied Ecology, 2009, 46, 476-485.	4.0	72
50	Climate Change and Elevated Extinction Rates of Reptiles from Mediterranean Islands. American Naturalist, 2011, 177, 119-129.	2.1	71
51	Phylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome. MBio, 2017, 8, .	4.1	70
52	Long-Term Persistence of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome, in the Absence of Bats. EcoHealth, 2015, 12, 330-333.	2.0	68
53	Quantitative Risk Assessment of the Pathways by Which West Nile Virus Could Reach Hawaii. EcoHealth, 2004, 1, 205-209.	2.0	65
54	Predictive Power of Air Travel and Socio-Economic Data for Early Pandemic Spread. PLoS ONE, 2010, 5, e12763.	2.5	65

#	Article	IF	CITATIONS
55	Land Use and West Nile Virus Seroprevalence in Wild Mammals. Emerging Infectious Diseases, 2008, 14, 962-965.	4.3	58
56	Introduction, Spread, and Establishment of West Nile Virus in the Americas. Journal of Medical Entomology, 2019, 56, 1448-1455.	1.8	55
57	Widespread Bat White-Nose Syndrome Fungus, Northeastern China. Emerging Infectious Diseases, 2015, 22, 140-142.	4.3	54
58	Cryptic connections illuminate pathogen transmission within community networks. Nature, 2018, 563, 710-713.	27.8	54
59	Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7255-7262.	7.1	53
60	Geographic variation in the response of Culex pipiens life history traits to temperature. Parasites and Vectors, 2016, 9, 116.	2.5	52
61	Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Scientific Reports, 2019, 9, 9158.	3.3	50
62	Variation in growth of Brown-headed Cowbird (Molothrus ater) nestlings and energetic impacts on their host parents. Canadian Journal of Zoology, 2002, 80, 145-153.	1.0	49
63	Anthropogenic impacts on mosquito populations in North America over the past century. Nature Communications, 2016, 7, 13604.	12.8	49
64	Effects of Chronic Avian Malaria (Plasmodium Relictum) Infection on Reproductive Success of Hawaii Amakihi (Hemignathus Virens). Auk, 2006, 123, 764-774.	1.4	48
65	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	2.0	45
66	Rainfall Influences Survival of <i>Culex pipiens</i> (Diptera: Culicidae) in a Residential Neighborhood in the Mid-Atlantic United States. Journal of Medical Entomology, 2012, 49, 467-473.	1.8	43
67	West Nile Virus Revisited: Consequences for North American Ecology. BioScience, 2008, 58, 937-946.	4.9	42
68	Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecology Letters, 2021, 24, 130-148.	6.4	42
69	Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152861.	2.6	40
70	Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. American Journal of Tropical Medicine and Hygiene, 2007, 77, 667-71.	1.4	40
71	White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods. EcoHealth, 2016, 13, 60-71.	2.0	39
72	DNA Vaccination of American Robins (Turdus migratorius) Against West Nile Virus. Vector-Borne and Zoonotic Diseases, 2010, 10, 377-380.	1.5	38

#	Article	IF	CITATIONS
73	Avian roosting behavior influences vector-host interactions for West Nile virus hosts. Parasites and Vectors, 2014, 7, 399.	2.5	37
74	Efficacy of Visual Surveys for White-Nose Syndrome at Bat Hibernacula. PLoS ONE, 2015, 10, e0133390.	2.5	34
75	Contact tracing efficiency, transmission heterogeneity, and accelerating COVID-19 epidemics. PLoS Computational Biology, 2021, 17, e1009122.	3.2	33
76	Mosquito Landing Rates on Nesting American Robins (Turdus migratorius). Vector-Borne and Zoonotic Diseases, 2007, 7, 437-443.	1.5	32
77	Topâ€down and bottomâ€up influences on demographic rates of Antarctic fur seals <i>Arctocephalus gazella</i> . Journal of Animal Ecology, 2013, 82, 903-911.	2.8	32
78	Direct Detection of Fungal Siderophores on Bats with White-Nose Syndrome via Fluorescence Microscopy-Guided Ambient Ionization Mass Spectrometry. PLoS ONE, 2015, 10, e0119668.	2.5	30
79	Conservation, biodiversity and infectious disease: scientific evidence and policy implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160124.	4.0	29
80	A Bioenergetics Approach to Understanding the Population Consequences of Disturbance: Elephant Seals as a Model System. Advances in Experimental Medicine and Biology, 2016, 875, 161-169.	1.6	29
81	West Nile Virus Ecology in a Tropical Ecosystem in Guatemala. American Journal of Tropical Medicine and Hygiene, 2013, 88, 116-126.	1.4	28
82	Integral Projection Models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution, 2016, 7, 1182-1194.	5.2	28
83	Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems. Journal of Medical Entomology, 2019, 56, 1491-1497.	1.8	27
84	Environmental monitoring to enhance comprehension and control of infectious diseases. Journal of Environmental Monitoring, 2010, 12, 2048.	2.1	26
85	Predicted and observed mortality from vector-borne disease in wildlife: West Nile virus and small songbirds. Biological Conservation, 2013, 165, 79-85.	4.1	25
86	Land Use and Larval Habitat Increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) Abundance in Lowland Hawaii. Journal of Medical Entomology, 2018, 55, 1509-1516.	1.8	24
87	A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making. PLoS Neglected Tropical Diseases, 2021, 15, e0009653.	3.0	22
88	Safe reopening of college campuses during COVID-19: The University of California experience in Fall 2020. PLoS ONE, 2021, 16, e0258738.	2.5	21
89	Seasonal and spatial variation in <i>Toxoplasma gondii</i> contamination in soil in urban public spaces in California, United States. Zoonoses and Public Health, 2020, 67, 70-78.	2.2	20
90	The role of native and introduced birds in transmission of avian malaria in Hawaii. Ecology, 2020, 101, e03038.	3.2	20

#	Article	IF	CITATIONS
91	Quantifying Trends in Disease Impact to Produce a Consistent and Reproducible Definition of an Emerging Infectious Disease. PLoS ONE, 2013, 8, e69951.	2.5	19
92	Potential public health benefits from cat eradications on islands. PLoS Neglected Tropical Diseases, 2019, 13, e0007040.	3.0	19
93	Continued preference for suboptimal habitat reduces bat survival with white-nose syndrome. Nature Communications, 2021, 12, 166.	12.8	19
94	Increased Human Incidence of West Nile Virus Disease near Rice Fields in California but Not in Southern United States. American Journal of Tropical Medicine and Hygiene, 2018, 99, 222-228.	1.4	19
95	Estimating Burdens of Neglected Tropical Zoonotic Diseases on Islands with Introduced Mammals. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0573.	1.4	16
96	Using network theory to identify the causes of disease outbreaks of unknown origin. Journal of the Royal Society Interface, 2013, 10, 20120904.	3.4	13
97	Integrating social and ecological data to model metapopulation dynamics in coupled human and natural systems. Ecology, 2019, 100, e02711.	3.2	11
98	Experimental infection of eastern gray squirrels (Sciurus carolinensis) with West Nile virus. American Journal of Tropical Medicine and Hygiene, 2008, 79, 447-51.	1.4	11
99	Threshold levels of generalist predation determine consumer response to resource pulses. Oikos, 2015, 124, 1436-1443.	2.7	10
100	Impact of censusing and research on wildlife populations. Conservation Science and Practice, 2020, 2, e264.	2.0	10
101	Mobility and infectiousness in the spatial spread of an emerging fungal pathogen. Journal of Animal Ecology, 2021, 90, 1134-1141.	2.8	10
102	Seroprevalence of West Nile virus in nonhuman primates as related to mosquito abundance at two national primate research centers. Comparative Medicine, 2007, 57, 115-9.	1.0	7
103	Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202817.	2.6	6
104	Human Health. , 2013, , 312-339.		6
105	Changing Contact Patterns Over Disease Progression: Nipah Virus as a Case Study. Journal of Infectious Diseases, 2020, 222, 438-442.	4.0	4
106	Variation in resting strategies across trophic levels and habitats in mammals. Ecology and Evolution, 2021, 11, 14405-14415.	1.9	3