
Sihong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4124690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	13.7	1,588
2	Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy and Environmental Science, 2013, 6, 3576.	15.6	1,380
3	Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Letters, 2012, 12, 6339-6346.	4.5	1,062
4	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
5	Freestanding Triboelectric‣ayerâ€Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Nonâ€contact Modes. Advanced Materials, 2014, 26, 2818-2824.	11.1	752
6	Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Letters, 2010, 10, 3151-3155.	4.5	713
7	Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015, 11, 436-462.	8.2	674
8	Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano Letters, 2013, 13, 2226-2233.	4.5	633
9	Theory of Slidingâ€Mode Triboelectric Nanogenerators. Advanced Materials, 2013, 25, 6184-6193.	11.1	581
10	A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Advanced Materials, 2012, 24, 1759-1764.	11.1	555
11	Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano, 2013, 7, 8266-8274.	7.3	529
12	Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionizedâ€Air Injection: Methodology and Theoretical Understanding. Advanced Materials, 2014, 26, 6720-6728.	11.1	517
13	Theoretical Investigation and Structural Optimization of Singleâ€Electrode Triboelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 3332-3340.	7.8	513
14	In Vivo Powering of Pacemaker by Breathingâ€Driven Implanted Triboelectric Nanogenerator. Advanced Materials, 2014, 26, 5851-5856.	11.1	476
15	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	6.6	464
16	Grating‧tructured Freestanding Triboelectric‣ayer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency. Advanced Materials, 2014, 26, 6599-6607.	11.1	440
17	Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Letters, 2013, 13, 2916-2923.	4.5	437
18	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	13.1	421

SIHONG WANG

#	Article	IF	CITATIONS
19	Progress in nanogenerators for portable electronics. Materials Today, 2012, 15, 532-543.	8.3	417
20	Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015, 12, 760-774.	8.2	409
21	Effective energy storage from a triboelectric nanogenerator. Nature Communications, 2016, 7, 10987.	5.8	407
22	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	7.6	407
23	Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for Highâ€Efficiency Energyâ€Harvesting and Selfâ€Powered Sensing. Advanced Materials, 2015, 27, 2340-2347.	11.1	397
24	Rectangular Bunched Rutile TiO ₂ Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 4437-4441.	6.6	349
25	Rotary Triboelectric Nanogenerator Based on a Hybridized Mechanism for Harvesting Wind Energy. ACS Nano, 2013, 7, 7119-7125.	7.3	328
26	A Flexible Fiberâ€Based Supercapacitor–Triboelectricâ€Nanogenerator Power System for Wearable Electronics. Advanced Materials, 2015, 27, 4830-4836.	11.1	322
27	An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO ₂ Nanotube Arrays. Nano Letters, 2012, 12, 2520-2523.	4.5	312
28	Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified TiO ₂ Nanomaterials. ACS Nano, 2013, 7, 4554-4560.	7.3	276
29	Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013, 2, 491-497.	8.2	264
30	Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. Journal of Materials Chemistry A, 2016, 4, 3728-3734.	5.2	257
31	Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell. Nano Letters, 2012, 12, 5048-5054.	4.5	255
32	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	13.3	251
33	Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of â°1⁄455%. ACS Nano, 2015, 9, 922-930.	7.3	245
34	Ultratransparent and stretchable graphene electrodes. Science Advances, 2017, 3, e1700159.	4.7	231
35	Pyroelectric Nanogenerators for Driving Wireless Sensors. Nano Letters, 2012, 12, 6408-6413.	4.5	221
36	Quantitative Measurements of Vibration Amplitude Using a Contact-Mode Freestanding Triboelectric Nanogenerator. ACS Nano, 2014, 8, 12004-12013.	7.3	219

SIHONG WANG

#	Article	IF	CITATIONS
37	Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Applied Materials & Interfaces, 2014, 6, 3031-3038.	4.0	217
38	Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy, 2014, 8, 150-156.	8.2	214
39	A theoretical study of grating structured triboelectric nanogenerators. Energy and Environmental Science, 2014, 7, 2339-2349.	15.6	194
40	Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Research, 2014, 7, 990-997.	5.8	180
41	Manipulating Nanoscale Contact Electrification by an Applied Electric Field. Nano Letters, 2014, 14, 1567-1572.	4.5	175
42	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	13.1	170
43	Selfâ€Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body using a Triboelectric Sensor. Advanced Functional Materials, 2014, 24, 7488-7494.	7.8	161
44	Stretchable transistors and functional circuits for human-integrated electronics. Nature Electronics, 2021, 4, 17-29.	13.1	153
45	Enhanced Performance of Flexible ZnO Nanowire Based Roomâ€Temperature Oxygen Sensors by Piezotronic Effect. Advanced Materials, 2013, 25, 3701-3706.	11.1	146
46	Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage. IEEE Transactions on Electron Devices, 2015, 62, 641-647.	1.6	144
47	Motion Charged Battery as Sustainable Flexible-Power-Unit. ACS Nano, 2013, 7, 11263-11271.	7.3	139
48	A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Science Advances, 2021, 7, eabi4563.	4.7	136
49	Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators. Advanced Energy Materials, 2017, 7, 1602832.	10.2	129
50	A self-powered electrochromic device driven by a nanogenerator. Energy and Environmental Science, 2012, 5, 9462.	15.6	117
51	Strain-Gated Piezotronic Transistors Based on Vertical Zinc Oxide Nanowires. ACS Nano, 2012, 6, 3760-3766.	7.3	113
52	A Streaming Potential/Currentâ€Based Microfluidic Direct Current Generator for Selfâ€Powered Nanosystems. Advanced Materials, 2015, 27, 6482-6487.	11.1	104
53	Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. ACS Nano, 2015, 9, 7479-7487.	7.3	100
54	Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS Nano, 2015, 9, 11056-11063.	7.3	99

SIHONG WANG

#	Article	IF	CITATIONS
55	Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2014, 6, 129-136.	8.2	98
56	Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy, 2015, 14, 77-86.	8.2	95
57	Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology, 2012, 23, 055604.	1.3	74
58	Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers. Macromolecules, 2018, 51, 4976-4985.	2.2	68
59	An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. Energy and Environmental Science, 2013, 6, 1164.	15.6	53
60	Stretchable Redoxâ€Active Semiconducting Polymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2201178.	11.1	50
61	Implantable bioelectronics toward long-term stability and sustainability. Matter, 2021, 4, 1125-1141.	5.0	45
62	Nanostructuring HfO ₂ Thin Films as Antireflection Coatings. Journal of the American Ceramic Society, 2009, 92, 3077-3080.	1.9	25
63	Observation of Stepwise Ultrafast Crystallization Kinetics of Donor–Acceptor Conjugated Polymers and Correlation with Field Effect Mobility. Chemistry of Materials, 2021, 33, 1637-1647.	3.2	17
64	A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics. Matter, 2021, 4, 3015-3029.	5.0	13