Gregory George Germino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4123993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple-laboratory comparison of microarray platforms. Nature Methods, 2005, 2, 345-350.	19.0	814
2	Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature, 2000, 408, 990-994.	27.8	759
3	The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5466-5471.	7.1	715
4	PKD1 interacts with PKD2 through a probable coiled-coil domain. Nature Genetics, 1997, 16, 179-183.	21.4	620
5	The Molecular Basis of Focal Cyst Formation in Human Autosomal Dominant Polycystic Kidney Disease Type I. Cell, 1996, 87, 979-987.	28.9	558
6	PKHD1, the Polycystic Kidney and Hepatic Disease 1 Gene, Encodes a Novel Large Protein Containing Multiple Immunoglobulin-Like Plexin-Transcription–Factor Domains and Parallel Beta-Helix 1 Repeats. American Journal of Human Genetics, 2002, 70, 1305-1317.	6.2	445
7	PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2. Cell, 2002, 109, 157-168.	28.9	392
8	A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nature Medicine, 2007, 13, 1490-1495.	30.7	370
9	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 2008, 182, 437-447.	5.2	349
10	Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16981-16986.	7.1	281
11	Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine-rich repeat. Human Molecular Genetics, 1995, 4, 575-582.	2.9	232
12	Spectrum of Mutations in the Gene for Autosomal Recessive Polycystic Kidney Disease (ARPKD/PKHD1). Journal of the American Society of Nephrology: JASN, 2003, 14, 76-89.	6.1	226
13	Rapamycin Ameliorates PKD Resulting from Conditional Inactivation of Pkd1. Journal of the American Society of Nephrology: JASN, 2010, 21, 489-497.	6.1	226
14	Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): Molecular genetics, clinical experience, and fetal morphology. American Journal of Medical Genetics Part A, 1998, 76, 137-144.	2.4	224
15	Polycystin-1, the Gene Product of PKD1 , Induces Resistance to Apoptosis and Spontaneous Tubulogenesis in MDCK Cells. Molecular Cell, 2000, 6, 1267-1273.	9.7	206
16	Somatic Mutation in Individual Liver Cysts Supports a Two-Hit Model of Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. Molecular Cell, 1998, 2, 247-251.	9.7	192
17	Polycystin-1 Regulates Extracellular Signal-Regulated Kinase-Dependent Phosphorylation of Tuberin To Control Cell Size through mTOR and Its Downstream Effectors S6K and 4EBP1. Molecular and Cellular Biology, 2009, 29, 2359-2371.	2.3	175
18	Identification of a Novel Cytokine, ML-1, and Its Expression in Subjects with Asthma. Journal of Immunology, 2001, 167, 4430-4435.	0.8	174

#	Article	IF	CITATIONS
19	From cilia to cyst. Nature Genetics, 2003, 34, 355-356.	21.4	161
20	Polycystin 2 Interacts with Type I Inositol 1,4,5-Trisphosphate Receptor to Modulate Intracellular Ca2+ Signaling. Journal of Biological Chemistry, 2005, 280, 41298-41306.	3.4	157
21	Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18688-18693.	7.1	149
22	PKHD1mutations in autosomal recessive polycystic kidney disease (ARPKD). Human Mutation, 2004, 23, 453-463.	2.5	145
23	Somatic PKD2 Mutations in Individual Kidney and Liver Cysts Support a "Two-Hit―Model of Cystogenesis in Type 2 Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 1999, 10, 1524-1529.	6.1	145
24	Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney International, 2004, 66, 1345-1355.	5.2	138
25	A Functional Floxed Allele of Pkd1 that Can Be Conditionally Inactivated In Vivo. Journal of the American Society of Nephrology: JASN, 2004, 15, 3035-3043.	6.1	135
26	Molecular Advances in Autosomal Dominant Polycystic Kidney Disease. Advances in Chronic Kidney Disease, 2010, 17, 118-130.	1.4	128
27	Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease. EBioMedicine, 2016, 5, 183-192.	6.1	127
28	Autosomal dominant polycystic kidney disease: Molecular genetics and pathophysiology. Translational Research, 2003, 141, 91-101.	2.3	120
29	Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nature Genetics, 2000, 25, 143-144.	21.4	116
30	Genetic interaction studies link autosomal dominant and recessive polycystic kidney disease in a common pathway. Human Molecular Genetics, 2007, 16, 1940-1950.	2.9	114
31	Expression of PKD1 and PKD2 Transcripts and Proteins in Human Embryo and during Normal Kidney Development. American Journal of Pathology, 2002, 160, 973-983.	3.8	113
32	Milder Presentation of Recessive Polycystic Kidney Disease Requires Presence of Amino Acid Substitution Mutations. Journal of the American Society of Nephrology: JASN, 2003, 14, 2004-2014.	6.1	113
33	Polyductin undergoes notch-like processing and regulated release from primary cilia. Human Molecular Genetics, 2007, 16, 942-956.	2.9	106
34	Identification and Characterization of Pkhd1, the Mouse Orthologue of the Human ARPKD Gene. Journal of the American Society of Nephrology: JASN, 2002, 13, 2246-2258.	6.1	104
35	Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nature Communications, 2014, 5, 5482.	12.8	101
36	Role of polycystins in renal tubulogenesis. Trends in Cell Biology, 2003, 13, 484-492.	7.9	99

#	Article	IF	CITATIONS
37	Linking cilia to Wnts. Nature Genetics, 2005, 37, 455-457.	21.4	99
38	Mutation Detection of PKD1 Identifies a Novel Mutation Common to Three Families with Aneurysms and/or Very-Early-Onset Disease. American Journal of Human Genetics, 1999, 65, 1561-1571.	6.2	96
39	Polycystin-1 Induces Cell Migration by Regulating Phosphatidylinositol 3-kinase-dependent Cytoskeletal Rearrangements and GSK3β-dependent Cell–Cell Mechanical Adhesion. Molecular Biology of the Cell, 2007, 18, 4050-4061.	2.1	96
40	Characterization of cis-Autoproteolysis of Polycystin-1, the Product of Human Polycystic Kidney Disease 1 Gene. Journal of Biological Chemistry, 2007, 282, 21729-21737.	3.4	88
41	Pkd1 Haploinsufficiency Increases Renal Damage and Induces Microcyst Formation following Ischemia/Reperfusion. Journal of the American Society of Nephrology: JASN, 2009, 20, 2389-2402.	6.1	87
42	Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Molecular Genetics and Metabolism, 2007, 92, 160-167.	1.1	84
43	An unusual pattern of mutation in the duplicated portion of PKD1 is revealed by use of a novel strategy for mutation detection. Human Molecular Genetics, 1997, 6, 1473-1481.	2.9	83
44	mTOR Inhibitors in Polycystic Kidney Disease. New England Journal of Medicine, 2010, 363, 879-881.	27.0	82
45	The gene for autosomal dominant polycystic kidney disease lies in a 750-kb CpG-rich region. Genomics, 1992, 13, 144-151.	2.9	80
46	Aberrant Splicing in the PKD2 Gene as a Cause of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 1999, 10, 2342-2351.	6.1	77
47	Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Journal of the American Society of Nephrology: JASN, 2006, 17, 637-647.	6.1	75
48	Network Analysis of a Pkd1-Mouse Model of Autosomal Dominant Polycystic Kidney Disease Identifies HNF4α as a Disease Modifier. PLoS Genetics, 2012, 8, e1003053.	3.5	75
49	A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Scientific Reports, 2018, 8, 2743.	3.3	75
50	The Nanomechanics of Polycystin-1 Extracellular Region. Journal of Biological Chemistry, 2005, 280, 40723-40730.	3.4	74
51	Loss of Bardet–Biedl syndrome proteins causes defects in peripheral sensory innervation and function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17524-17529.	7.1	71
52	Polycystin Signaling Is Required for Directed Endothelial Cell Migration and Lymphatic Development. Cell Reports, 2014, 7, 634-644.	6.4	71
53	Pkd1 and Pkd2 Are Required for Normal Placental Development. PLoS ONE, 2010, 5, e12821.	2.5	70
54	The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nature Reviews Nephrology, 2019, 15, 735-749.	9.6	65

#	Article	IF	CITATIONS
55	"Mistakes Happenâ€; Somatic Mutation and Disease. American Journal of Human Genetics, 1997, 61, 1000-1005.	6.2	54
56	A missense mutation in PKD1 attenuates the severity of renal disease. Kidney International, 2012, 81, 412-417.	5.2	54
57	Mutation Analysis of the Entire Replicated Portion of PKD1 Using Genomic DNA Samples. Journal of the American Society of Nephrology: JASN, 2001, 12, 955-963.	6.1	53
58	Biochemical characterization of bona fide polycystin-1 in vitro and in vivo. American Journal of Kidney Diseases, 2001, 38, 1421-1429.	1.9	46
59	Inactivation of Pkd1 in principal cells causes a more severe cystic kidney disease than in intercalated cells. Kidney International, 2009, 75, 626-633.	5.2	45
60	A Pkd1-Fbn1 Genetic Interaction Implicates TGF-Î ² Signaling in the Pathogenesis of Vascular Complications in Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 81-91.	6.1	44
61	A novel model of autosomal recessive polycystic kidney questions the role of the fibrocystin C-terminus in disease mechanism. Kidney International, 2017, 92, 1130-1144.	5.2	43
62	Polycystin-1 Is Required for Stereocilia Structure But Not for Mechanotransduction in Inner Ear Hair Cells. Journal of Neuroscience, 2011, 31, 12241-12250.	3.6	40
63	Fine genetic localization of the gene for autosomal dominant polycystic kidney disease (PKD1) with respect to physically mapped markers. Genomics, 1992, 13, 152-158.	2.9	37
64	Polycystic Kidney Disease, Cilia, and Planar Polarity. Methods in Cell Biology, 2009, 94, 273-297.	1.1	32
65	Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1. Journal of Molecular Medicine, 2014, 92, 1045-1056.	3.9	32
66	Thirteen novel mutations of the replicated region of PKD1 in an Asian population. Kidney International, 2000, 58, 1400-1412.	5.2	30
67	An Integrated Genetic and Physical Map of the Autosomal Recessive Polycystic Kidney Disease Region. Genomics, 1997, 41, 463-466.	2.9	29
68	Loss of polycystin-1 or polycystin-2 results in dysregulated apolipoprotein expression in murine tissues via alterations in nuclear hormone receptors. Human Molecular Genetics, 2006, 15, 11-21.	2.9	28
69	The PKD1 gene product. Nature Medicine, 1995, 1, 493-493.	30.7	27
70	T-cell factor/β-catenin activity is suppressed in two different models of autosomal dominant polycystic kidney disease. Kidney International, 2011, 80, 146-153.	5.2	27
71	A 1-Mb BAC/PAC-Based Physical Map of the Autosomal Recessive Polycystic Kidney Disease Gene (PKHD1) Region on Chromosome 6. Genomics, 1999, 57, 249-255.	2.9	26
72	A Regulatory Role of Polycystin-1 on Cystic Fibrosis Transmembrane Conductance Regulator Plasma Membrane Expression. Cellular Physiology and Biochemistry, 2006, 18, 9-20.	1.6	26

#	Article	IF	CITATIONS
73	Human-mouse homologies in the region of the polycystic kidney disease gene (PKD1). Genomics, 1992, 13, 35-38.	2.9	25
74	A 2.5 kb Polypyrimidine Tract in the PKD1 Gene Contains at Least 23 H-DNA-Forming Sequences. Genome Science & Technology, 1996, 1, 317-327.	0.7	25
75	NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology. Scientific Reports, 2017, 7, 7733.	3.3	22
76	Autosomal Dominant Polycystic Kidney Disease: A Two-Hit Model. Hospital Practice (1995), 1997, 32, 81-102.	1.0	21
77	Heterologous expression of polycystin-1 inhibits endoplasmic reticulum calcium leak in stably transfected MDCK cells. American Journal of Physiology - Renal Physiology, 2008, 294, F1279-F1286.	2.7	21
78	ARPKD and ADPKD. Journal of the American Society of Nephrology: JASN, 2008, 19, 416-418.	6.1	18
79	Systems biology of polycystic kidney disease: a critical review. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 39-52.	6.6	18
80	Polycystin-1 regulates the stability and ubiquitination of transcription factor Jade-1. Human Molecular Genetics, 2012, 21, 5456-5471.	2.9	17
81	A transducin-like gene maps to the autosomal dominant polycystic kidney disease gene region. Genomics, 1993, 18, 709-711.	2.9	16
82	Refinement of the autosomal recessive polycystic kidney disease (PKHD1) interval and exclusion of an EF hand-containing gene as aPKHD1 candidate gene. American Journal of Medical Genetics Part A, 2002, 110, 346-352.	2.4	15
83	Ectopic expression of Cux1 is associated with reduced p27 expression and increased apoptosis during late stage cyst progression upon inactivation of Pkd1 in collecting ducts. Developmental Dynamics, 2011, 240, 1493-1501.	1.8	13
84	Murine models of polycystic kidney disease. Drug Discovery Today Disease Mechanisms, 2013, 10, e153-e158.	0.8	13
85	Murine Pkd1 introns 21 and 22 lack the extreme polypyrimidine bias present in human PKD1. Mammalian Genome, 1999, 10, 194-196.	2.2	11
86	A splice form of polycystin-2, lacking exon 7, does not interact with polycystin-1. Human Molecular Genetics, 2005, 14, 3249-3262.	2.9	11
87	Macromolecular assembly of polycystin-2 intracytosolic C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9833-9838.	7.1	11
88	Cosmid walking and chromosome jumping in the region of PKD1 reveal a locus duplication and three CpG islands. Nucleic Acids Research, 1990, 18, 7071-7075.	14.5	10
89	Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): Molecular genetics, clinical experience, and fetal morphology. American Journal of Medical Genetics Part A, 1998, 76, 137-144.	2.4	10
90	Pathway identification through transcriptome analysis. Cellular Signalling, 2020, 74, 109701.	3.6	9

#	Article	IF	CITATIONS
91	The isolated polycystin-1 COOH-terminal can activate or block polycystin-1 signaling. Biochemical and Biophysical Research Communications, 2007, 359, 367-372.	2.1	8
92	Polycystin-1 and polycystin-2—it's complicated. Nature Reviews Nephrology, 2013, 9, 249-250.	9.6	8
93	Impaired glomerulogenesis and endothelial cell migration in Pkd1-deficient renal organ cultures. Biochemical and Biophysical Research Communications, 2014, 444, 473-479.	2.1	8
94	Genomic organization of the KIAA0057 gene that encodes a TRAM-like protein and its exclusion as a polycystic kidney and hepatic disease 1 (PKHD1) candidate gene. Mammalian Genome, 1999, 10, 1175-1178.	2.2	7
95	Genomic structure of the gene for the human P1 protein (MCM3) and its exclusion as a candidate for autosomal recessive polycystic kidney disease. European Journal of Human Genetics, 2000, 8, 163-166.	2.8	7
96	Determination of urinary lithogenic parameters in murine models orthologous to autosomal dominant polycystic kidney disease. Urolithiasis, 2014, 42, 301-307.	2.0	5
97	Progesterone induced mesenchymal differentiation and rescued cystic dilation of renal tubules of Pkd1â^'/â^' mice. Biochemical and Biophysical Research Communications, 2012, 425, 212-218.	2.1	3
98	Pkd1 Mutation Has No Apparent Effects on Peroxisome Structure or Lipid Metabolism. Kidney360, 2021, 2, 1576-1591.	2.1	2
99	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of General Physiology, 2008, 132, i2-i2.	1.9	2
100	Polycystic Kidney Disease. , 2015, , 484-500.		1
101	Polycystic Kidney Disease. , 2020, , 771-797.		1
102	A Report of the 24th Annual Congress on Women's Health—Workshop on Transforming Women's Health: From Research to Practice. Journal of Women's Health, 2018, 27, 115-120.	3.3	0
103	Polycystic Kidney Disease. , 1998, , 675-683.		0