Haiping Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4123427/publications.pdf Version: 2024-02-01

HAIDING MAO

#	Article	IF	CITATIONS
1	Changes of antibiotic resistance over time among <i>Escherichia coli</i> peritonitis in Southern China. Peritoneal Dialysis International, 2022, 42, 218-222.	2.3	5
2	Association between serum chloride levels with mortality in incident peritoneal dialysis patients. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 624-631.	2.6	3
3	Association of Abnormal Iron Status with the Occurrence and Prognosis of Peritoneal Dialysis-Related Peritonitis: A Longitudinal Data-Based 10-Year Retrospective Study. Nutrients, 2022, 14, 1613.	4.1	2
4	Incidence and Risk Factors Associated with Technique Failure in the First Year of Peritoneal Dialysis: A Single Center Retrospective Cohort Study in Southern China. BMC Nephrology, 2022, 23, .	1.8	2
5	Uric acid to high-density lipoprotein cholesterol ratio predicts cardiovascular mortality in patients on peritoneal dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 561-569.	2.6	15
6	Abnormal iron status is associated with an increased risk of mortality in patients on peritoneal dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 1148-1155.	2.6	7
7	Serum Hepcidin-25 and Risk of Mortality in Patients on Peritoneal Dialysis. Frontiers in Medicine, 2021, 8, 684548.	2.6	6
8	Association between monocyte count to high-density lipoprotein cholesterol ratio and mortality in patients undergoing peritoneal dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2081-2088.	2.6	8
9	Risk factors and clinical outcomes of encapsulating peritoneal sclerosis: A case–control study from China. Peritoneal Dialysis International, 2021, , 089686082110292.	2.3	1
10	Non-high-density lipoprotein cholesterol and mortality among peritoneal dialysis patients. Journal of Clinical Lipidology, 2021, 15, 732-742.	1.5	4
11	Elevated Serum Trimethylamine N-Oxide Levels Are Associated with Mortality in Male Patients on Peritoneal Dialysis. Blood Purification, 2021, 50, 837-847.	1.8	9
12	Early initiation of PD therapy in elderly patients is associated with increased risk of death. CKJ: Clinical Kidney Journal, 2021, 14, 1649-1656.	2.9	3
13	Serum Phosphorus and Albumin in Patients Undergoing Peritoneal Dialysis: Interaction and Association With Mortality. Frontiers in Medicine, 2021, 8, 760394.	2.6	9
14	Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. Journal of Human Genetics, 2020, 65, 241-249.	2.3	20
15	Peritonitis Affects the Relationship Between Low-Density Lipoprotein Cholesterol and Cardiovascular Events in Peritoneal Dialysis Patients. Canadian Journal of Cardiology, 2020, 36, 92-99.	1.7	3
16	Higher serum phosphorus predicts residual renal function loss in male but not female incident peritoneal dialysis patients. Journal of Nephrology, 2020, 33, 829-837.	2.0	2
17	Serum Sodium Modifies the Association of Systolic Blood Pressure with Mortality in Peritoneal Dialysis Patients. Kidney and Blood Pressure Research, 2020, 45, 916-925.	2.0	1
18	Rationale and design for Lowering-hyperUricaemia treatment on cardiovascular outcoMes In peritoNeal diAlysis patients: a prospective, multicentre, double-blind, randomised controlled trial (LUMINA). BMJ Open, 2020, 10, e037842.	1.9	1

HAIPING MAO

#	Article	IF	CITATIONS
19	Higher Eosinophils Predict Death-Censored Technique Failure in Peritoneal Dialysis Patients. International Archives of Allergy and Immunology, 2020, 181, 765-773.	2.1	2
20	The negative impact of depressive symptoms on patient and technique survival in peritoneal dialysis: a prospective cohort study. International Urology and Nephrology, 2020, 52, 2393-2401.	1.4	4
21	Plasma fibrinogen and mortality in patients undergoing peritoneal dialysis: a prospective cohort study. BMC Nephrology, 2020, 21, 349.	1.8	8
22	Ten-year survival of patients treated with peritoneal dialysis: A prospective observational cohort study. Peritoneal Dialysis International, 2020, 40, 573-580.	2.3	6
23	The predictive study of the relation between elevated low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and mortality in peritoneal dialysis. Lipids in Health and Disease, 2020, 19, 51.	3.0	11
24	ST6GAL1 polymorphisms influence susceptibility and progression of IgA nephropathy in a Chinese Han population. Immunobiology, 2020, 225, 151973.	1.9	5
25	Prevalence and risk factors of exit-site infection in incident peritoneal dialysis patients. Peritoneal Dialysis International, 2020, 40, 164-170.	2.3	19
26	Age Difference in the Association between Hyponatremia and Infection-Related Mortality in Peritoneal Dialysis Patients. Blood Purification, 2020, 49, 631-640.	1.8	5
27	Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death and Disease, 2020, 11, 29.	6.3	73
28	Serum lipoprotein(a) and risk of mortality in patients on peritoneal dialysis. Journal of Clinical Lipidology, 2020, 14, 252-259.	1.5	5
29	Roles of peritoneal clearance and residual kidney removal in control of uric acid in patients on peritoneal dialysis. BMC Nephrology, 2020, 21, 148.	1.8	3
30	Gender impact on baseline peritoneal transport properties in incident peritoneal dialysis patients. International Urology and Nephrology, 2019, 51, 2055-2061.	1.4	2
31	Urgent-start peritoneal dialysis for patients with end stage renal disease: a 10-year retrospective study. BMC Nephrology, 2019, 20, 238.	1.8	27
32	Long-Term Clinical Outcomes of Lupus Nephritis Patients Undergoing Peritoneal Dialysis: A Matched, Case-Control Study. Peritoneal Dialysis International, 2019, 39, 570-573.	2.3	3
33	Association of <i>FCRL3</i> Gene Polymorphisms with IgA Nephropathy in a Chinese Han Population. DNA and Cell Biology, 2019, 38, 1155-1165.	1.9	8
34	Association of ITGAX and ITGAM gene polymorphisms with susceptibility to IgA nephropathy. Journal of Human Genetics, 2019, 64, 927-935.	2.3	10
35	Association of Lean Body Mass Index and Peritoneal Protein Clearance in Peritoneal Dialysis Patients. Kidney and Blood Pressure Research, 2019, 44, 94-102.	2.0	10
36	ATG5-mediated autophagy suppresses NF-κB signaling to limit epithelial inflammatory response to kidney injury. Cell Death and Disease, 2019, 10, 253.	6.3	105

HAIPING MAO

#	Article	IF	CITATIONS
37	Association of body mass index and uncontrolled blood pressure with cardiovascular mortality in peritoneal dialysis patients. Journal of Human Hypertension, 2019, 33, 106-114.	2.2	3
38	Association of left ventricular systolic dysfunction with mortality in incident peritoneal dialysis patients. Nephrology, 2018, 23, 927-932.	1.6	5
39	Maintained Folic Acid Supplementation Reduces the Risk of Mortality in Continuous Ambulatory Peritoneal Dialysis Patients. Blood Purification, 2018, 45, 28-35.	1.8	2
40	Acetylation of HMGB1 by JNK1 Signaling Promotes LPS-Induced Peritoneal Mesothelial Cells Apoptosis. BioMed Research International, 2018, 2018, 1-12.	1.9	4
41	Serum magnesium and cardiovascular mortality in peritoneal dialysis patients: a 5-year prospective cohort study. British Journal of Nutrition, 2018, 120, 415-423.	2.3	18
42	Association Analysis of the MHC in Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2017, 28, 3383-3394.	6.1	21
43	The impact of peritoneal dialysis-related peritonitis on mortality in peritoneal dialysis patients. BMC Nephrology, 2017, 18, 186.	1.8	90
44	Association of baseline, longitudinal serum high-sensitive C-reactive protein and its change with mortality in peritoneal dialysis patients. BMC Nephrology, 2017, 18, 211.	1.8	13
45	Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction. Science Translational Medicine, 2016, 8, 345ra88.	12.4	35
46	Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G ₂ /M arrest and renal fibrosis. Autophagy, 2016, 12, 1472-1486.	9.1	149
47	Patient Survival and Technique Failure in Continuous Ambulatory Peritoneal Dialysis Patients with Prior Stroke. Peritoneal Dialysis International, 2016, 36, 308-314.	2.3	8
48	Heat Shock Protein 72 Antagonizes STAT3 Signaling to Inhibit Fibroblast Accumulation in Renal Fibrogenesis. American Journal of Pathology, 2016, 186, 816-828.	3.8	12
49	Inhibition of EGF Receptor Blocks the Development and Progression of Peritoneal Fibrosis. Journal of the American Society of Nephrology: JASN, 2016, 27, 2631-2644.	6.1	43
50	Heat shock protein 72 suppresses apoptosis by increasing the stability of X-linked inhibitor of apoptosis protein in renal ischemia/reperfusion injury. Molecular Medicine Reports, 2015, 11, 1793-1799.	2.4	8
51	Association of Body Mass Index and Body Mass Index Change with Mortality in Incident Peritoneal Dialysis Patients. Nutrients, 2015, 7, 8444-8455.	4.1	16
52	Faster Transport Status and Mortality in Anuric Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Blood Purification, 2015, 40, 160-166.	1.8	3
53	Prevalence of erectile dysfunction and its association with residual renal function in Chinese peritoneal dialysis patients. International Urology and Nephrology, 2015, 47, 383-389.	1.4	8
54	The Effect of Fluid Overload on Clinical Outcome in Southern Chinese Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Peritoneal Dialysis International, 2015, 35, 691-702.	2.3	60

Haiping Mao

#	Article	IF	CITATIONS
55	Association of Pulmonary Hypertension with Mortality in Incident Peritoneal Dialysis Patients. Peritoneal Dialysis International, 2015, 35, 537-544.	2.3	22
56	Hepatitis B Virus Infection Rate and Distribution in Chinese Systemic Lupus Erythematosus Patients. Medical Science Monitor, 2015, 21, 1955-1959.	1.1	3
57	Serum Potassium Levels and Its Variability in Incident Peritoneal Dialysis Patients: Associations with Mortality. PLoS ONE, 2014, 9, e86750.	2.5	41
58	Alkaline Phosphatase and Mortality in Patients on Peritoneal Dialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 771-778.	4.5	44
59	<i>Escherichia Coli</i> Peritonitis in Peritoneal Dialysis: The Prevalence, Antibiotic Resistance and Clinical Outcomes in a South China Dialysis Center. Peritoneal Dialysis International, 2014, 34, 308-316.	2.3	39
60	High Peritoneal Transport Status Was Not Associated with Mortality in Peritoneal Dialysis Patients with Diabetes. PLoS ONE, 2014, 9, e110445.	2.5	7
61	Clinical outcome and risk factors for mortality in Chinese patients with diabetes on peritoneal dialysis: A 5-year clinical cohort study. Diabetes Research and Clinical Practice, 2013, 100, 354-361.	2.8	41
62	Clinical Outcomes of Peritoneal Dialysis Patients Transferred from Hemodialysis: A Matched Case–Control Study. Peritoneal Dialysis International, 2013, 33, 259-266.	2.3	9
63	Prevalence and Factors Associated with Hypomagnesemia in Southern Chinese Continuous Ambulatory Peritoneal Dialysis Patients. Peritoneal Dialysis International, 2013, 33, 450-454.	2.3	17
64	MicroRNA-21 is Overexpressed in Renal Cell Carcinoma. International Journal of Biological Markers, 2013, 28, 201-207.	1.8	30
65	The Potential Role of HMGB1 Release in Peritoneal Dialysis-Related Peritonitis. PLoS ONE, 2013, 8, e54647.	2.5	17
66	Malnutrition-inflammation score predicts long-term mortality in Chinese PD patients. Clinical Nephrology, 2013, 79, 477-483.	0.7	25
67	Clinicopathologic features and treatment response in nephrotic IgA nephropathy with minimal change disease. Clinical Nephrology, 2013, 79, 37-44.	0.7	18
68	V-ATPase promotes transforming growth factor-Î ² -induced epithelial-mesenchymal transition of rat proximal tubular epithelial cells. American Journal of Physiology - Renal Physiology, 2012, 302, F1121-F1132.	2.7	20
69	Autophagy protects against necrotic renal epithelial cell-induced death of renal interstitial fibroblasts. American Journal of Physiology - Renal Physiology, 2012, 303, F83-F91.	2.7	11
70	Gender Difference in the Association of Hyperuricemia with Chronic Kidney Disease in Southern China. Kidney and Blood Pressure Research, 2012, 36, 98-106.	2.0	10
71	Clinical Outcome of Hyperuricemia in IgA Nephropathy: A Retrospective Cohort Study and Randomized Controlled Trial. Kidney and Blood Pressure Research, 2012, 35, 153-160.	2.0	127
72	Elevated neutrophil to lymphocyte ratio predicts overall and cardiovascular mortality in maintenance peritoneal dialysis patients. International Urology and Nephrology, 2012, 44, 1521-1528.	1.4	55

HAIPING MAO

#	Article	IF	CITATIONS
73	High Prevalence and Associated Risk Factors for Impaired Renal Function and Urinary Abnormalities in a Rural Adult Population from Southern China. PLoS ONE, 2012, 7, e47100.	2.5	20
74	Prevalence and risk factors of sleep disturbance in continuous ambulatory peritoneal dialysis patients in Guangzhou, southern China. International Urology and Nephrology, 2012, 44, 929-936.	1.4	35
75	Prevalence and risk factors of chronic kidney disease in firstâ€degree relatives of chronic kidney disease patients in Southern China. Nephrology, 2012, 17, 123-130.	1.6	9
76	A Crosstalk between the Smad and JNK Signaling in the TGF-Î ² -Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells. PLoS ONE, 2012, 7, e32009.	2.5	64
77	Heat Shock Protein 72 Enhances Autophagy as a Protective Mechanism in Lipopolysaccharide-Induced Peritonitis in Rats. American Journal of Pathology, 2011, 179, 2822-2834.	3.8	49
78	Association between depression and malnutrition–inflammation complex syndrome in patients with continuous ambulatory peritoneal dialysis. International Urology and Nephrology, 2011, 43, 875-882.	1.4	32
79	ls cystatin C a better marker than creatinine for evaluating residual renal function in patients on continuous ambulatory peritoneal dialysis?. Nephrology Dialysis Transplantation, 2011, 26, 3358-3365.	0.7	25
80	HSP72 Inhibits Smad3 Activation and Nuclear Translocation in Renal Epithelial-to-Mesenchymal Transition. Journal of the American Society of Nephrology: JASN, 2010, 21, 598-609.	6.1	60
81	GSK3Î ² Promotes Apoptosis after Renal Ischemic Injury. Journal of the American Society of Nephrology: JASN, 2010, 21, 284-294.	6.1	94
82	Impaired TGF-Â signalling enhances peritoneal inflammation induced by E. Coli in rats. Nephrology Dialysis Transplantation, 2010, 25, 399-412.	0.7	21
83	A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney International, 2010, 78, 257-268.	5.2	219
84	β-Catenin Promotes Survival of Renal Epithelial Cells by Inhibiting Bax. Journal of the American Society of Nephrology: JASN, 2009, 20, 1919-1928.	6.1	96
85	Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. American Journal of Physiology - Renal Physiology, 2009, 297, F996-F1005.	2.7	188
86	Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-Î ² during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 51-59.	3.8	57
87	Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrology Dialysis Transplantation, 2008, 24, 1205-1212.	0.7	125
88	HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy. American Journal of Physiology - Renal Physiology, 2008, 295, F202-F214.	2.7	91
89	Src regulates cell cycle protein expression and renal epithelial cell proliferation via PI3K/Akt signaling-dependent and -independent mechanisms. American Journal of Physiology - Renal Physiology, 2008, 295, F145-F152.	2.7	24
90	Transforming Growth Factor β1 Induces Epithelial–mesenchymal Transition by Activating the Jnk–SMAD3 Pathway in Rat Peritoneal Mesothelial Cells. Peritoneal Dialysis International, 2008, 28, 88-95.	2.3	55

Haiping Mao

#	Article	IF	CITATIONS
91	Transforming growth factor {beta}1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Peritoneal Dialysis International, 2008, 28 Suppl 3, S88-95.	2.3	34
92	Decreased expressions of the TNF-alpha signaling adapters in peripheral blood mononuclear cells (PBMCs) are correlated with disease activity in patients with systemic lupus erythematosus. Clinical Rheumatology, 2007, 26, 1481-1489.	2.2	32
93	Distinct hsp70 Domains Mediate Apoptosis-inducing Factor Release and Nuclear Accumulation. Journal of Biological Chemistry, 2006, 281, 7873-7880.	3.4	103
94	Hsp72 Interacts with Paxillin and Facilitates the Reassembly of Focal Adhesions during Recovery from ATP Depletion. Journal of Biological Chemistry, 2004, 279, 15472-15480.	3.4	24
95	hsp72 Inhibits Focal Adhesion Kinase Degradation in ATP-depleted Renal Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 18214-18220.	3.4	45
96	HSP72 inhibits apoptosis-inducing factor release in ATP-depleted renal epithelial cells. American Journal of Physiology - Cell Physiology, 2003, 285, C1483-C1493.	4.6	78