Oliver Mitesser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4123179/publications.pdf

Version: 2024-02-01

567281 580821 38 733 15 25 citations h-index g-index papers 40 40 40 984 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition. Ecosystems, 2023, 26, 397-411.	3.4	5
2	Tracking the temporal dynamics of insect defoliation by highâ€resolution radar satellite data. Methods in Ecology and Evolution, 2022, 13, 121-132.	5.2	15
3	The rising moon promotes mate finding in moths. Communications Biology, 2022, 5, 393.	4.4	5
4	Women temporarily synchronize their menstrual cycles with the luminance and gravimetric cycles of the Moon. Science Advances, 2021, 7, .	10.3	25
5	Natural Zeitgebers Under Temperate Conditions Cannot Compensate for the Loss of a Functional Circadian Clock in Timing of a Vital Behavior in <i>Drosophila</i> 2021, 36, 271-285.	2.6	3
6	Relationship of insect biomass and richness with land use along a climate gradient. Nature Communications, 2021, 12, 5946.	12.8	61
7	A Novel Thermal-Visual Place Learning Paradigm for Honeybees (Apis mellifera). Frontiers in Behavioral Neuroscience, 2020, 14, 56.	2.0	1
8	Multiple host use and the dynamics of host switching in host–parasite systems. Insect Conservation and Diversity, 2019, 12, 511-522.	3.0	4
9	The Circadian Clock Improves Fitness in the Fruit Fly, Drosophila melanogaster. Frontiers in Physiology, 2019, 10, 1374.	2.8	23
10	Explaining the variability in the response of annual eusocial insects to massâ€flowering events. Journal of Animal Ecology, 2019, 88, 178-188.	2.8	6
11	Eusociality outcompetes egalitarian and solitary strategies when resources are limited and reproduction is costly. Ecology and Evolution, 2018, 8, 12953-12964.	1.9	14
12	Suitable triggers for timing the transition from worker to sexual production in annual eusocial insects. Insectes Sociaux, 2018, 65, 609-617.	1.2	3
13	Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees. PeerJ, 2018, 6, e4721.	2.0	23
14	Saving the injured: Rescue behavior in the termite-hunting ant <i>Megaponera analis</i> . Science Advances, 2017, 3, e1602187.	10.3	39
15	Mating timing, dispersal and local adaptation in patchy environments. Oikos, 2017, 126, 1804-1814.	2.7	8
16	Altered sexâ€specific mortality and female mating success: ecological effects and evolutionary responses. Ecosphere, 2017, 8, e01820.	2.2	7
17	The evolution of simultaneous progressive provisioning revisited: extending the model to overlapping generations. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	1
18	Evolving mutation rate advances the invasion speed of a sexual species. BMC Evolutionary Biology, 2017, 17, 150.	3.2	16

#	Article	IF	Citations
19	Street lighting: sexâ€independent impacts on moth movement. Journal of Animal Ecology, 2016, 85, 1352-1360.	2.8	60
20	The evolution of density-dependent dispersal under limited information. Ecological Modelling, 2016, 338, 1-10.	2.5	7
21	The Adequate Use of Limited Information in Dispersal Decisions. American Naturalist, 2016, 187, 136-142.	2.1	8
22	The evolution of optimal emergence times: bet hedging and the quest for an ideal free temporal distribution of individuals. Oikos, 2016, 125, 1647-1656.	2.7	15
23	High Female Survival Promotes Evolution of Protogyny and Sexual Conflict. PLoS ONE, 2015, 10, e0118354.	2.5	18
24	Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology, 2015, 96, 1351-1360.	3.2	74
25	Gender-Specific Emigration Decisions Sensitive to Local Male and Female Density. American Naturalist, 2014, 184, 38-51.	2.1	22
26	Unexpected Benefit of a Social Parasite for a Key Fitness Component of Its Ant Host. American Naturalist, 2012, 179, 110-123.	2.1	14
27	Availability and depletion of fat reserves in halictid foundress queens with a focus on solitary nest founding. Insectes Sociaux, 2012, 59, 67-74.	1.2	20
28	Risk sensitivity revisited: from individuals to populations. Animal Behaviour, 2011, 82, 875-883.	1.9	4
29	Correlations between Sequential Timing Decisions Do Not Necessarily Indicate Strategic Behavior: A Comment on Bêty et al American Naturalist, 2010, 176, 835-837.	2.1	2
30	Workers, sexuals, or both? Optimal allocation of resources to reproduction and growth in annual insect colonies. Insectes Sociaux, 2009, 56, 119-129.	1.2	21
31	Effect of vegetation density, height, and connectivity on the oviposition pattern of the leaf beetle <i>Galeruca tanaceti</i> . Entomologia Experimentalis Et Applicata, 2009, 132, 134-146.	1.4	19
32	An Evolutionarily Stable Strategy Model for the Evolution of Dimorphic Development in the Butterfly Maculinea rebeli, a Social Parasite of Myrmica Ant Colonies. American Naturalist, 2007, 169, 466-480.	2.1	10
33	Host plant finding in the specialised leaf beetle Cassida canaliculata: an analysis of small-scale movement behaviour. Ecological Entomology, 2007, 32, 070130195410001-???.	2.2	6
34	Adaptive dynamic resource allocation in annual eusocial insects: environmental variation will not necessarily promote graded control. BMC Ecology, 2007, 7, 16.	3.0	7
35	Optimal investment allocation in primitively eusocial bees: a balance model based on resource limitation of the queen. Insectes Sociaux, 2007, 54, 234-241.	1.2	13
36	The influence of soil temperature on the nesting cycle of the halictid bee Lasioglossum malachurum. Insectes Sociaux, 2006, 53, 390-398.	1.2	32

3

#	Article	lF	CITATIONS
37	The evolution of activity breaks in the nest cycle of annual eusocial bees: a model of delayed exponential growth. BMC Evolutionary Biology, 2006, 6, 45.	3.2	16
38	Local Extinction and the Evolution of Dispersal Rates: Causes and Correlations. American Naturalist, 2003, 161, 631-640.	2.1	103