
Sebastian Calderon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4121605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Progress in Materials Science, 2016, 84, 158-191.	32.8	116
2	Structure–property relations in ZrCN coatings for tribological applications. Surface and Coatings Technology, 2010, 205, 2134-2141.	4.8	65
3	Chemical and structural characterization of ZrCNAg coatings: XPS, XRD and Raman spectroscopy. Applied Surface Science, 2015, 346, 240-247.	6.1	61
4	Ag ⁺ release inhibition from ZrCN–Ag coatings by surface agglomeration mechanism: structural characterization. Journal Physics D: Applied Physics, 2013, 46, 325303.	2.8	55
5	Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates. Applied Surface Science, 2016, 377, 283-291.	6.1	55
6	Silver activation on thin films of Ag–ZrCN coatings for antimicrobial activity. Materials Science and Engineering C, 2015, 55, 547-555.	7.3	38
7	Structural and electrochemical characterization of Zr–C–N–Ag coatings deposited by DC dual magnetron sputtering. Corrosion Science, 2014, 80, 229-236.	6.6	31
8	Silica nanocarriers with user-defined precise diameters by controlled template self-assembly. Journal of Colloid and Interface Science, 2020, 561, 609-619.	9.4	25
9	Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films: Antibacterial application. Surface and Coatings Technology, 2016, 298, 1-6.	4.8	22
10	Ag+ release and corrosion behavior of zirconium carbonitride coatings with silver nanoparticles for biomedical devices. Surface and Coatings Technology, 2013, 222, 104-111.	4.8	21
11	Study of the effect of the silver content on the structural and mechanical behavior of Ag–ZrCN coatings for orthopedic prostheses. Materials Science and Engineering C, 2014, 42, 782-790.	7.3	21
12	Electrochemical Corrosion of Nano-Structured Magnetron-Sputtered Coatings. Coatings, 2019, 9, 682.	2.6	21
13	Antibacterial Effects of Bimetallic Clusters Incorporated in Amorphous Carbon for Stent Application. ACS Applied Materials & Interfaces, 2020, 12, 24555-24563.	8.0	20
14	Exploring the synthesis conditions to control the morphology of gold-iron oxide heterostructures. Nano Research, 2019, 12, 1781-1788.	10.4	18
15	Atomic Electrostatic Maps of Point Defects in MoS ₂ . Nano Letters, 2021, 21, 10157-10164.	9.1	14
16	Surface characterization of Ti-Si-C-ON coatings for orthopedic devices: XPS and Raman spectroscopy. Solid State Sciences, 2011, 13, 95-100.	3.2	13
17	Electrochemical response of ZrCN-Ag-a(C,N) coatings in simulated body fluids. Electrochimica Acta, 2015, 176, 898-906.	5.2	13
18	On the Structure of Amorphous Mesoporous Silica Nanoparticles by Aberrationâ€Corrected STEM. Small, 2018, 14, e1802180.	10.0	12

SEBASTIAN CALDERON

#	Article	IF	CITATIONS
19	Influence of the surface morphology and microstructure on the biological properties of Ti–Si–C–N–O coatings. Thin Solid Films, 2010, 518, 5694-5699.	1.8	11
20	Prediction of optimized composition for enhanced mechanical and electrochemical response of Zr-C-N-Ag coatings for medical devices. Applied Surface Science, 2014, 320, 570-580.	6.1	11
21	Influence of Oxygen content on the electrochemical behavior of Ta1-xOx coatings. Electrochimica Acta, 2016, 211, 385-394.	5.2	11
22	Electrochemical vs antibacterial characterization of ZrCN–Ag coatings. Surface and Coatings Technology, 2015, 275, 357-362.	4.8	7
23	Biotribological behavior of Ag–ZrCxN1â^'x coatings against UHMWPE for joint prostheses devices. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 83-91.	3.1	7
24	Influence of hydrogen incorporation and coating thickness on the corrosion resistance of carbon based coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2015, 275, 127-132.	4.8	6
25	Structural, magnetic and magneto-electric properties of thin films prepared by pulsed laser deposition. Microelectronics Journal, 2008, 39, 1281-1283.	2.0	4
26	Pulsed laser deposition and characterization of La1â^'xSrxMnO3. Materials Science in Semiconductor Processing, 2012, 15, 492-498.	4.0	4