Linfang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120596/publications.pdf

Version: 2024-02-01

		361413	330143
52	1,421	20	37
papers	citations	h-index	g-index
52	52	52	1110
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Space-wave isolator based on remanence at microwave frequencies. Optik, 2021, 227, 165531.	2.9	O
2	Ultrawideband unidirectional surface magnetoplasmons based on remanence for the microwave region. Optical Materials Express, 2021, 11, 2335.	3.0	3
3	Robust one-way modes in photonic crystals without an external magnetic field. Optical Materials Express, 2021, 11, 3896.	3.0	3
4	Large-area unidirectional surface magnetoplasmons using uniaxial \hat{l} 4-near-zero material. Optics Letters, 2021, 46, 5978.	3.3	4
5	Ultra-subwavelength focusing and giant magnetic-field enhancement in a low-loss one-way waveguide based on remanence. Journal of Optics (United Kingdom), 2020, 22, 025003.	2.2	6
6	Mechanically scanned leaky-wave antenna based on a topological one-way waveguide. Frontiers of Physics, 2020, 15, 1.	5.0	3
7	Nonreciprocal cavities and the time-bandwidth limit: comment. Optica, 2020, 7, 1097.	9.3	12
8	One-way edge modes in truncated semiconductor photonic crystal at terahertz frequencies. Journal of Optics (United Kingdom), 2019, 21, 065802.	2.2	2
9	Equivalent circuit parameters of planar transmission lines with spoof surface plasmon polaritons and its application in high density circuits. Scientific Reports, 2019, 9, 18853.	3.3	4
10	Magnetic field assisted beam-scanning leaky-wave antenna utilizing one-way waveguide. Scientific Reports, 2019, 9, 16777.	3.3	6
11	Broadband one-way propagation and rainbow trapping of terahertz radiations. Optics Express, 2019, 27, 10659.	3.4	19
12	Unidirectional-propagating surface magnetoplasmon based on remanence and its application for subwavelength isolators. Optical Materials Express, 2019, 9, 2415.	3.0	8
13	Impact of Reentry Speed on the Transmission of Obliquely Incident THz Waves in Realistic Plasma Sheaths. IEEE Transactions on Plasma Science, 2018, 46, 373-378.	1.3	38
14	Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath. Physics of Plasmas, 2018, 25, .	1.9	29
15	One-Way Electromagnetic Mode Guided by the Mechanism of Total Internal Reflection. IEEE Photonics Technology Letters, 2018, 30, 133-136.	2.5	10
16	Completely stopping microwaves with extremely enhanced magnetic fields. Scientific Reports, 2018, 8, 15811.	3.3	4
17	High-efficiency tunable T-shaped beam splitter based on one-way waveguide. Journal of Optics (United) Tj ETQq1	. 1 0.7843 2.2	14 _f gBT /Ove
18	One-way edge modes in a photonic crystal of semiconductor at terahertz frequencies. Scientific Reports, 2018, 8, 8165.	3.3	8

#	Article	IF	Citations
19	Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science, 2017, 356, 1260-1264.	12.6	174
20	Sub-THz signals' propagation model in hypersonic plasma sheath under different atmospheric conditions. Science China Information Sciences, 2017, 60, 1.	4.3	17
21	Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Scientific Reports, 2017, 7, 16817.	3.3	60
22	One-Way Propagation and Complete Trapping of Terahertz Radiations in All-Dielectric Systems. Plasmonics, 2017, 12, 399-404.	3 . 4	3
23	STUDIES OF TERAHERTZ WAVE PROPAGATION IN REALISTIC REENTRY PLASMA SHEATH. Progress in Electromagnetics Research, 2016, 157, 21-29.	4.4	39
24	Complete trapping of electromagnetic radiation using surface magnetoplasmons. Optics Letters, 2015, 40, 1853.	3.3	15
25	Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies. Optics Express, 2015, 23, 950.	3.4	57
26	Stopping terahertz radiation without backscattering over a broad band. Optics Express, 2015, 23, 11790.	3.4	24
27	One-way regular electromagnetic mode immune to backscattering. Applied Optics, 2015, 54, 4608.	1.8	16
28	Subwavelength guiding of channel plasmon polaritons in a semiconductor at terahertz frequencies. Applied Optics, 2014, 53, 5896.	1.8	3
29	Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons. Optics Express, 2014, 22, 26777.	3.4	49
30	Highâ€directivity radiation based on the leaky mode of spoof surface plasmon polaritons. IET Microwaves, Antennas and Propagation, 2014, 8, 1075-1079.	1.4	10
31	Time-reversed lasing based on one-dimensional gratings. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 299-302.	2.1	5
32	One-way electromagnetic mode at the surface of a magnetized gyromagnetic medium. Electronic Materials Letters, 2014, 10, 969-973.	2.2	2
33	Terahertz Plasmonic Microcavity with High Quality Factor and Ultrasmall Mode Volume. Plasmonics, 2013, 8, 319-324.	3.4	2
34	Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths. Applied Physics Letters, 2013, 102, 031606.	3.3	24
35	One-way edge mode in a gyromagnetic photonic crystal slab. Optics Letters, 2012, 37, 4110.	3. 3	52
36	Interaction Between Two One-Way Waveguides. IEEE Journal of Quantum Electronics, 2012, 48, 1059-1064.	1.9	6

#	Article	IF	CITATIONS
37	Channel Plasmon Polaritons Guiding by a Partial-Dielectric-Loaded Metallic Groove. IEEE Photonics Technology Letters, 2012, 24, 2265-2267.	2.5	4
38	Highly-Confined Guiding of Terahertz Waves Along Subwavelength Grooves. IEEE Photonics Technology Letters, 2012, 24, 1343-1345.	2.5	22
39	Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars. Optics Communications, 2012, 285, 2076-2080.	2.1	20
40	Guiding Terahertz Waves by a Single Row of Periodic Holes on a Planar Metal Surface. Plasmonics, 2011, 6, 301-305.	3.4	20
41	Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. Journal of Applied Physics, 2010, 108, 113104.	2.5	52
42	Blue-shifted contra-directional coupling between a periodic and conventional dielectric waveguides. Optics Express, 2010, 18, 9341.	3.4	1
43	Superlens formed by a one-dimensional dielectric photonic crystal. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 391.	2.1	11
44	Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Optics Express, 2008, 16, 3326.	3.4	128
45	Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires. Physical Review B, 2008, 77, .	3.2	47
46	Effect of internal period on the optical dispersion of indefinite-medium materials. Physical Review B, 2008, 77, .	3.2	37
47	Anisotropic medium with parabolic dispersion. Applied Physics Letters, 2008, 92, 261905.	3.3	7
48	50â-50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion. Applied Physics Letters, 2007, 90, 251909.	3.3	48
49	Finite-Size Effects of a Left-Handed Material Slab on the Image Quality. Physical Review Letters, 2004, 92, 107404.	7.8	129
50	Stability and quality factor of a one-dimensional subwavelength cavity resonator containing a left-handed material. Physical Review B, 2004, 69, .	3.2	31
51	Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm. Physical Review B, 2003, 68, .	3.2	113
52	Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels. Physical Review B, 2002, 66, .	3.2	28