Emmanuel Bertin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120515/publications.pdf

Version: 2024-02-01

31976 17105 18,031 122 53 122 citations h-index g-index papers 122 122 122 11317 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SExtractor: Software for source extraction. Astronomy and Astrophysics, 1996, 117, 393-404.	2.1	8,063
2	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	4.7	751
3	Dancing in the dark: galactic properties trace spin swings along the cosmic web. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1453-1468.	4.4	614
4	EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA. Astrophysical Journal, 2015, 807, 50.	4.5	466
5	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	7.7	455
6	Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Physical Review D, 2018, 98, .	4.7	412
7	EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY. Astrophysical Journal, 2015, 813, 109.	4.5	405
8	The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations. Monthly Notices of the Royal Astronomical Society, 2006, 368, 1323-1339.	4.4	389
9	THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 224, 1.	7.7	233
10	First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	8.3	201
11	Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3879-3888.	4.4	196
12	Stellar Streams Discovered in the Dark Energy Survey. Astrophysical Journal, 2018, 862, 114.	4. 5	193
13	Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2018, 235, 33.	7.7	192
14	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
15	The Dark Energy Survey Image Processing Pipeline. Publications of the Astronomical Society of the Pacific, 2018, 130, 074501.	3.1	161
16	redMaGiC: selecting luminous red galaxies from the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1431-1450.	4.4	156
17	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Physical Review D, 2022, 105, .	4.7	151
18	Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 592-610.	4.4	145

#	Article	IF	CITATIONS
19	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to modeling uncertainty. Physical Review D, 2022, 105, .	4.7	145
20	Dark Energy Survey Year 1 results: weak lensing shape catalogues. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1149-1182.	4.4	144
21	Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Physical Review D, 2020, 102, .	4.7	140
22	Dark Energy Survey year 1 results: Constraints on extended cosmological models from galaxy clustering and weak lensing. Physical Review D, 2019, 99, .	4.7	130
23	THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY. Astronomical Journal, 2015, 150, 172.	4.7	128
24	Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	125
25	The Dark Energy Survey Data Release 2. Astrophysical Journal, Supplement Series, 2021, 255, 20.	7.7	120
26	The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel'dovich Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 253, 3.	7.7	118
27	Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1. Astrophysical Journal, 2020, 893, 47.	4.5	110
28	Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4866-4883.	4.4	109
29	Dark Energy Survey year 1 results: Galaxy clustering for combined probes. Physical Review D, 2018, 98, .	4.7	102
30	Photometric redshifts from SDSS images using a convolutional neural network. Astronomy and Astrophysics, 2019, 621, A26.	5.1	101
31	The SPTpol Extended Cluster Survey. Astrophysical Journal, Supplement Series, 2020, 247, 25.	7.7	101
32	Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2021, 254, 24.	7.7	93
33	First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation. Astrophysical Journal, 2019, 874, 150.	4.5	92
34	Cosmological Constraints from Multiple Probes in the Dark Energy Survey. Physical Review Letters, 2019, 122, 171301.	7.8	86
35	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
36	OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3047-3063.	4.4	75

3

#	Article	IF	Citations
37	The strong gravitational lens finding challenge. Astronomy and Astrophysics, 2019, 625, A119.	5.1	7 5
38	Forward Global Photometric Calibration of the Dark Energy Survey. Astronomical Journal, 2018, 155, 41.	4.7	74
39	A Statistical Standard Siren Measurement of the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object Merger GW190814 and Dark Energy Survey Galaxies. Astrophysical Journal Letters, 2020, 900, L33.	8.3	74
40	No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 457, 786-808.	4.4	71
41	Dark Energy Survey year 1 results: Galaxy-galaxy lensing. Physical Review D, 2018, 98, .	4.7	71
42	Survey geometry and the internal consistency of recent cosmic shear measurements. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4998-5004.	4.4	68
43	Superluminous supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2215-2241.	4.4	67
44	Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4249-4277.	4.4	67
45	VDES J2325â^5229 a <i>z</i> = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4325-4334.	4.4	66
46	OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release. Monthly Notices of the Royal Astronomical Society, 2017, 472, 273-288.	4.4	65
47	Dark Energy Survey Year 1 Results: Detection of Intracluster Light at RedshiftÂâ^¼Â0.25. Astrophysical Journal, 2019, 874, 165.	4.5	65
48	First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4426-4447.	4.4	63
49	Finding high-redshift strong lenses in DES using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5330-5349.	4.4	62
50	DES J0454 \hat{a}^{3} 4448: discovery of the first luminous (i>za%\delta 6 quasar from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3952-3961.	4.4	60
51	First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	4.5	60
52	Density split statistics: Joint model of counts and lensing in cells. Physical Review D, 2018, 98, .	4.7	59
53	Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2219-2238.	4.4	55
54	Dark Energy Survey Y3 results: blending shear and redshift biases in image simulations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3371-3394.	4.4	53

#	Article	IF	CITATIONS
55	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey. Astrophysical Journal, 2018, 862, 123.	4.5	50
56	The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations. Astrophysical Journal, Supplement Series, 2017, 232, 15.	7.7	48
57	THE PHOENIX STREAM: A COLD STREAM IN THE SOUTHERN HEMISPHERE. Astrophysical Journal, 2016, 820, 58.	4.5	46
58	The Dark Energy Survey data processing and calibration system. Proceedings of SPIE, 2012, , .	0.8	45
59	Dark Energy Surveyed Year 1 results: calibration of cluster mis-centring in the redMaPPer catalogues. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2578-2593.	4.4	44
60	GALAXIES IN X-RAY SELECTED CLUSTERS AND GROUPS IN DARK ENERGY SURVEY DATA. I. STELLAR MASS GROWTH OF BRIGHT CENTRAL GALAXIES SINCE z \hat{a}^{1} /4 1.2. Astrophysical Journal, 2016, 816, 98.	4.5	43
61	Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with im3shape. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4524-4543.	4.4	43
62	OzDES multi-object fibre spectroscopy for the Dark Energy Survey: results and second data release. Monthly Notices of the Royal Astronomical Society, 2020, 496, 19-35.	4.4	43
63	Birds of a Feather? Magellan/IMACS Spectroscopy of the Ultra-faint Satellites Grus II, Tucana IV, and Tucana V*. Astrophysical Journal, 2020, 892, 137.	4.5	43
64	Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination. Astronomical Journal, 2018, 156, 81.	4.7	42
65	Discovery of two gravitationally lensed quasars in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1260-1265.	4.4	41
66	Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. Physical Review D, 2019, 100 , .	4.7	38
67	DISCOVERY OF A STELLAR OVERDENSITY IN ERIDANUS–PHOENIX IN THE DARK ENERGY SURVEY. Astrophysical Journal, 2016, 817, 135.	4.5	36
68	Search for RR Lyrae stars in DES ultrafaint systems: GrusÂl, KimÂ2, PhoenixÂll, and GrusÂll. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2183-2199.	4.4	35
69	The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3491-3511.	4.4	34
70	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields. Astrophysical Journal, Supplement Series, 2020, 246, 16.	7.7	33
71	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	8.3	32
72	Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4040-4060.	4.4	30

#	Article	lF	CITATIONS
73	No Evidence for Orbital Clustering in the Extreme Trans-Neptunian Objects. Planetary Science Journal, 2021, 2, 59.	3.6	29
74	Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au. Astrophysical Journal Letters, 2017, 839, L15.	8.3	28
75	The Morphology and Structure of Stellar Populations in the Fornax Dwarf Spheroidal Galaxy from Dark Energy Survey Data. Astrophysical Journal, 2019, 881, 118.	4.5	27
76	Dark energy survey year 1 results: Constraining baryonic physics in the Universe. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6010-6031.	4.4	27
77	A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects. Astrophysical Journal, Supplement Series, 2022, 258, 41.	7.7	27
78	ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS. Astronomical Journal, 2016, 151, 157.	4.7	24
79	The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2575-2593.	4.4	24
80	OzDES Reverberation Mapping Programme: the first Mg <scp>ii</scp> lags from 5 yr of monitoring. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3771-3788.	4.4	24
81	Optical variability of quasars with 20-yr photometric light curves. Monthly Notices of the Royal Astronomical Society, 2022, 514, 164-184.	4.4	24
82	Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios. Physical Review D, 2022, 105, .	4.7	23
83	A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey. Astronomical Journal, 2017, 153, 107.	4.7	21
84	Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3870-3883.	4.4	21
85	C/2014 UN ₂₇₁ (Bernardinelli-Bernstein): The Nearly Spherical Cow of Comets. Astrophysical Journal Letters, 2021, 921, L37.	8.3	21
86	Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog. Astrophysical Journal, Supplement Series, 2022, 258, 15.	7.7	21
87	The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4769-4786.	4.4	20
88	Probing Galaxy Evolution in Massive Clusters Using ACT and DES: Splashback as a Cosmic Clock. Astrophysical Journal, 2021, 923, 37.	4.5	20
89	OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS. Astronomical Journal, 2016, 151, 39.	4.7	19
90	Dark Energy Survey Year 1 results: validation of weak lensing cluster member contamination estimates from P(z) decomposition. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2511-2524.	4.4	19

#	Article	IF	Citations
91	Producing a BOSS CMASS sample with DES imaging. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2887-2906.	4.4	19
92	A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2770-2786.	4.4	19
93	Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey. Astronomical Journal, 2020, 159, 133.	4.7	19
94	Identifying RR Lyrae Variable Stars in Six Years of the Dark Energy Survey. Astrophysical Journal, 2021, 911, 109.	4.5	18
95	The first Hubble diagram and cosmological constraints using superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2535-2549.	4.4	18
96	Dark Energy Survey Year 3 results: marginalization over redshift distribution uncertainties using ranking of discrete realizations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2170-2185.	4.4	18
97	THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT <i>z</i> = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC. Astrophysical Journal, 2011, 742, 48.	4.5	16
98	Identification of RR Lyrae Stars in Multiband, Sparsely Sampled Data from the Dark Energy Survey Using Template Fitting and Random Forest Classification. Astronomical Journal, 2019, 158, 16.	4.7	16
99	DES Y1 results: Splitting growth and geometry to test <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">î></mml:mi><mml:mi><dm< mml:mi=""></dm<></mml:mi>>/mml:math>. Physical Review D, 2021, 103, .</mml:math>	4.7	16
100	Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and <i>Planck</i> thermal Sunyaev-Zel'dovich effect observations. I. Measurements, systematics tests, and feedback model constraints. Physical Review D, 2022, 105, .	4.7	16
101	Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 128.	4.5	16
102	Modelling the Milky Way – I. Method and first results fitting the thick disc and halo with DES-Y3 data. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1547-1562.	4.4	15
103	Comparing Dark Energy Survey and <i>HST </i> i>–CLASH observations of the galaxy cluster RXC J2248.7â°4431: implications for stellar mass versus dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1486-1499.	4.4	12
104	Lensing without borders – I. A blind comparison of the amplitude of galaxy–galaxy lensing between independent imaging surveys. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6150-6189.	4.4	12
105	Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits. Astronomical Journal, 2018, 156, 273.	4.7	11
106	OzDES reverberation mapping program: Lag recovery reliability for 6-yr C <scp> iv < /scp > analysis. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4008-4023.</scp>	4.4	11
107	The Observed Evolution of the Stellar Mass–Halo Mass Relation for Brightest Central Galaxies. Astrophysical Journal, 2022, 928, 28.	4.5	11
108	Probing gravity with the DES-CMASS sample and BOSS spectroscopy. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4982-4996.	4.4	9

#	Article	IF	CITATIONS
109	SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*. Astrophysical Journal, 2022, 929, 115.	4.5	9
110	Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed within the Dark Energy Survey. Astronomical Journal, 2019, 157, 120.	4.7	8
111	$\hat{l}^1\!/4\hat{a}_1$ masses: weak-lensing calibration of the Dark Energy Survey Year 1 redMaPPer clusters using stellar masses. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5450-5467.	4.4	8
112	From the Fire: A Deeper Look at the Phoenix Stream. Astrophysical Journal, 2022, 925, 118.	4.5	8
113	The dark energy survey 5-yr photometrically identified type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5159-5177.	4.4	8
114	The Evolution of AGN Activity in Brightest Cluster Galaxies. Astronomical Journal, 2022, 163, 146.	4.7	7
115	Galaxy–galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2033-2047.	4.4	6
116	Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. I. Evidence for Thermal Energy Anisotropy Using Oriented Stacking. Astrophysical Journal, 2022, 933, 134.	4.5	6
117	Galaxy clustering in harmonic space from the dark energy survey year 1 data: compatibility with real-space results. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5714-5724.	4.4	5
118	Understanding the extreme luminosity of DES14X2fna. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3950-3967.	4.4	4
119	Machine Learning for Searching the Dark Energy Survey for Trans-Neptunian Objects. Publications of the Astronomical Society of the Pacific, 2021, 133, 014501.	3.1	4
120	The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint. Astrophysical Journal, Supplement Series, 2022, 259, 27.	7.7	4
121	Multiwavelength optical and NIR variability analysis of the Blazar PKSÂ0027-426. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3145-3177.	4.4	2
122	Synthetic galaxy clusters and observations based on Dark Energy Survey Year 3 Data. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4865-4885.	4.4	1