Austin M Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118078/publications.pdf

Version: 2024-02-01

51 papers 3,458 citations

28 h-index 206112 48 g-index

54 all docs 54 docs citations

54 times ranked 3538 citing authors

#	Article	IF	Citations
1	Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, 2018, 361, 52-57.	12.6	474
2	Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 2018, 140, 2085-2092.	13.7	320
3	Sulfurâ€Limonene Polysulfide: A Material Synthesized Entirely from Industrial Byâ€Products and Its Use in Removing Toxic Metals from Water and Soil. Angewandte Chemie - International Edition, 2016, 55, 1714-1718.	13.8	240
4	Colloidal Covalent Organic Frameworks. ACS Central Science, 2017, 3, 58-65.	11.3	216
5	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	13.7	190
6	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nature Materials, 2021, 20, 1142-1148.	27.5	158
7	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie - International Edition, 2020, 59, 5165-5171.	13.8	128
8	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	47.7	128
9	Rapid Synthesis of High Surface Area Imineâ€Linked 2D Covalent Organic Frameworks by Avoiding Pore Collapse During Isolation. Advanced Materials, 2020, 32, e1905776.	21.0	125
10	Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nature Communications, 2019, 10, 504.	12.8	121
11	Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chemical Science, 2019, 10, 3796-3801.	7.4	118
12	Improved synthesis of \hat{i}^2 -ketoenamine-linked covalent organic frameworks <i>via</i> monomer exchange reactions. Chemical Communications, 2019, 55, 2680-2683.	4.1	100
13	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	13.7	87
14	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19728-19735.	13.7	79
15	Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics. Journal of the American Chemical Society, 2020, 142, 14957-14965.	13.7	68
16	Highâ€Sensitivity Acoustic Molecular Sensors Based on Largeâ€Area, Sprayâ€Coated 2D Covalent Organic Frameworks. Advanced Materials, 2020, 32, e2004205.	21.0	67
17	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	12.2	62
18	Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1367-1374.	13.7	58

#	Article	IF	CITATIONS
19	Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection., 2019, 1, 440-446.		55
20	High-Performance Organic Electronic Materials by Contorting Perylene Diimides. Journal of the American Chemical Society, 2022, 144, 42-51.	13.7	45
21	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. ACS Central Science, 2019, 5, 1892-1899.	11.3	44
22	Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discussions, 2021, 225, 226-240.	3.2	41
23	A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. Journal of the American Chemical Society, 2019, 141, 6473-6478.	13.7	40
24	Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2021, 143, 649-656.	13.7	40
25	High aspect ratio nanotubes assembled from macrocyclic iminium salts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8883-8888.	7.1	36
26	Equilibration of Imineâ€Linked Polymers to Hexagonal Macrocycles Driven by Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 3989-3993.	3.3	33
27	Acid Exfoliation of Imineâ€inked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie, 2020, 132, 5203-5209.	2.0	31
28	All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. Journal of the American Chemical Society, 2020, 142, 6548-6553.	13.7	31
29	Buckling of Two-Dimensional Covalent Organic Frameworks under Thermal Stress. Industrial & Engineering Chemistry Research, 2019, 58, 9883-9887.	3.7	30
30	Sulfurâ€Limonene Polysulfide: A Material Synthesized Entirely from Industrial Byâ€Products and Its Use in Removing Toxic Metals from Water and Soil. Angewandte Chemie, 2016, 128, 1746-1750.	2.0	29
31	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	13.7	28
32	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	13.7	25
33	Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films. Chemistry of Materials, 2021, 33, 1341-1352.	6.7	25
34	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	5.1	20
35	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 14708-14714.	13.8	19
36	A Semiconducting Twoâ€Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. Advanced Materials, 2022, 34, e2110703.	21.0	19

#	Article	IF	CITATIONS
37	Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks. ACS Nano, 2022, 16, 2843-2851.	14.6	17
38	Supramolecular polymerization provides non-equilibrium product distributions of imine-linked macrocycles. Chemical Science, 2020, 11, 1957-1963.	7.4	14
39	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	21.0	13
40	Arene–perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes. Chemical Science, 2022, 13, 2475-2480.	7.4	12
41	Site-Selective Surface Modification of 2D Superatomic Re ₆ Se ₈ . Journal of the American Chemical Society, 2022, 144, 74-79.	13.7	10
42	Ï€-Conjugated redox-active two-dimensional polymers as organic cathode materials. Chemical Science, 2022, 13, 3533-3538.	7.4	9
43	Increased Molecular Conductance in Oligo[<i>n</i>]phenylene Wires by Thermally Enhanced Dihedral Planarization. Nano Letters, 2022, 22, 4919-4924.	9.1	9
44	Anisotropic Transient Disordering of Colloidal, Two-Dimensional CdSe Nanoplatelets upon Optical Excitation. Nano Letters, 2021, 21, 1288-1294.	9.1	8
45	Diverse Proton-Conducting Nanotubes via a Tandem Macrocyclization and Assembly Strategy. Journal of the American Chemical Society, 2021, 143, 8145-8153.	13.7	7
46	Lithium-Conducting Self-Assembled Organic Nanotubes. Journal of the American Chemical Society, 2021, 143, 17655-17665.	13.7	7
47	Mechanism of Formation of Benzotrithiophene-Based Covalent Organic Framework Monolayers on Coinage-Metal Surfaces: Câ€"C Coupling Selectivity and Monomerâ€"Metal Interactions. Chemistry of Materials, 2020, 32, 10688-10696.	6.7	6
48	Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects., 2021, 3, 398-405.		6
49	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie, 2019, 131, 14850-14856.	2.0	4
50	Cyclophane-based two-dimensional polymer formed by an interfacial click reaction. Cell Reports Physical Science, 2022, 3, 100806.	5.6	3
51	Materials breaking the rules: general discussion. Faraday Discussions, 2021, 225, 255-270.	3.2	0