
Daniel Klose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4117995/publications.pdf Version: 2024-02-01

DANIEL KLOSE

#	Article	IF	CITATIONS
1	Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Timeâ€Delayed Hydrogen Generation. Angewandte Chemie - International Edition, 2017, 56, 510-514.	13.8	204
2	Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme. Nature Catalysis, 2018, 1, 578-584.	34.4	93
3	Single-molecule FRET supports the two-state model of Argonaute action. RNA Biology, 2014, 11, 45-56.	3.1	80
4	Protein NMR Spectroscopy at 150â€kHz Magicâ€Angle Spinning Continues To Improve Resolution and Mass Sensitivity. ChemBioChem, 2020, 21, 2540-2548.	2.6	72
5	Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements. PLoS ONE, 2012, 7, e39492.	2.5	64
6	Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Timeâ€Delayed Hydrogen Generation. Angewandte Chemie, 2017, 129, 525-529.	2.0	54
7	Orthogonal spin labeling using click chemistry for in vitro and in vivo applications. Journal of Magnetic Resonance, 2017, 275, 38-45.	2.1	54
8	Scalable Biosynthesis of Melanin by the Basidiomycete <i>Armillaria cepistipes</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 132-139.	5.2	50
9	RNA-Binding to Archaeal RNA Polymerase Subunits F/E: A DEER and FRET Study. Journal of the American Chemical Society, 2010, 132, 5954-5955.	13.7	49
10	Highly Efficient UV Protection of the Biomaterial Wood by A Transparent TiO ₂ /Ce Xerogel. ACS Applied Materials & Interfaces, 2017, 9, 39040-39047.	8.0	48
11	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 11707-11712.	13.8	36
12	Light-Induced H ₂ Evolution with a Macrocyclic Cobalt Diketo-Pyrphyrin as a Proton-Reducing Catalyst. Inorganic Chemistry, 2018, 57, 1651-1655.	4.0	35
13	UWB DEER and RIDME distance measurements in Cu(II)–Cu(II) spin pairs. Journal of Magnetic Resonance, 2019, 308, 106560.	2.1	34
14	Spatiotemporal Resolution of Conformational Changes in Biomolecules by Combining Pulsed Electron–Electron Double Resonance Spectroscopy with Microsecond Freeze-Hyperquenching. Journal of the American Chemical Society, 2021, 143, 6981-6989.	13.7	33
15	Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angewandte Chemie - International Edition, 2021, 60, 15944-15953.	13.8	33
16	Spectroscopic Study of Structural Phase Transition and Dynamic Effects in a [(CH ₃) ₂ NH ₂][Cd(N ₃) ₃] Hybrid Perovskite Framework. Journal of Physical Chemistry C, 2019, 123, 11840-11849.	3.1	32
17	Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. ACS Catalysis, 2020, 10, 11069-11080.	11.2	29
18	ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules, 2020, 25, 5268.	3.8	27

DANIEL KLOSE

#	Article	IF	CITATIONS
19	Orthogonal Tyrosine and Cysteine Site-Directed Spin Labeling for Dipolar Pulse EPR Spectroscopy on Proteins. Journal of Physical Chemistry Letters, 2017, 8, 4852-4857.	4.6	26
20	Lightâ€induced switching of HAMP domain conformation and dynamics revealed by timeâ€resolved EPR spectroscopy. FEBS Letters, 2014, 588, 3970-3976.	2.8	24
21	Single Crystal Electron Paramagnetic Resonance of Dimethylammonium and Ammonium Hybrid Formate Frameworks: Influence of External Electric Field. Journal of Physical Chemistry C, 2017, 121, 16533-16540.	3.1	24
22	A Robust and Efficient Propane Dehydrogenation Catalyst from Unexpectedly Segregated Pt ₂ Mn Nanoparticles. Journal of the American Chemical Society, 2022, 144, 13384-13393.	13.7	24
23	<i>In cell</i> Gd ³⁺ -based site-directed spin labeling and EPR spectroscopy of eGFP. Physical Chemistry Chemical Physics, 2020, 22, 13358-13362.	2.8	23
24	Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries. Biophysical Journal, 2021, 120, 4842-4858.	0.5	21
25	Pulse EPR and ENDOR Study of Manganese Doped [(CH ₃) ₂ NH ₂][Zn(HCOO) ₃] Hybrid Perovskite Framework. Journal of Physical Chemistry C, 2017, 121, 27225-27232.	3.1	20
26	Structural basis and mechanism for metallochaperone-assisted assembly of the Cu _A center in cytochrome oxidase. Science Advances, 2019, 5, eaaw8478.	10.3	20
27	Trityl Radicals with a Combination of the Orthogonal Functional Groups Ethyne and Carboxyl: Synthesis without a Statistical Step and EPR Characterization. Journal of Organic Chemistry, 2019, 84, 3304-3320.	3.2	20
28	Conformational Dynamics of Sensory Rhodopsin <scp>II</scp> in Nanolipoprotein and Styrene–Maleic Acid Lipid Particles. Photochemistry and Photobiology, 2019, 95, 1195-1204.	2.5	19
29	Spectroscopic Signature and Structure of the Active Sites in Ziegler–Natta Polymerization Catalysts Revealed by Electron Paramagnetic Resonance. Journal of the American Chemical Society, 2021, 143, 9791-9797.	13.7	19
30	Magnetic excitation and readout of methyl group tunnel coherence. Science Advances, 2020, 6, eaba1517.	10.3	16
31	Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Computational Biology, 2015, 11, e1004561.	3.2	15
32	Low oordinated Titanium(III) Alkyl—Molecular and Surface—Complexes: Detailed Structure from Advanced EPR Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 14533-14537.	13.8	15
33	Molecular and supported Ti(<scp>iii</scp>)-alkyls: efficient ethylene polymerization driven by the ï€-character of metal–carbon bonds and back donation from a singly occupied molecular orbital. Chemical Science, 2021, 12, 780-792.	7.4	15
34	Methaneâ€ŧoâ€Methanol on Mononuclear Copper(II) Sites Supported on Al ₂ O ₃ : Structure of Active Sites from Electron Paramagnetic Resonance**. Angewandte Chemie - International Edition, 2021, 60, 16200-16207.	13.8	15
35	Including Protons in Solid-State NMR Resonance Assignment and Secondary Structure Analysis: The Example of RNA Polymerase II Subunits Rpo4/7. Frontiers in Molecular Biosciences, 2019, 6, 100.	3.5	14
36	Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase. Nature Communications, 2021, 12, 5293.	12.8	13

DANIEL KLOSE

#	Article	IF	CITATIONS
37	Conformational changes of the histidine ATP-binding cassette transporter studied by double electron–electron resonance spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1760-1768.	2.6	12
38	Bis(imidazolium)â€1,3â€diphospheteâ€diide: A Building Block for FeC ₂ P ₂ Complexes and Clusters. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
39	Accessing distributions of exchange and dipolar couplings in stiff molecular rulers with Cu(<scp>ii</scp>) centres. Physical Chemistry Chemical Physics, 2020, 22, 21707-21730.	2.8	9
40	Non-uniform HYSCORE: Measurement, processing and analysis with Hyscorean. Journal of Magnetic Resonance, 2019, 307, 106576.	2.1	7
41	Bis(imidazolium)â€1,3â€diphospheteâ€diide: A Building Block for FeC ₂ P ₂ Complexes and Clusters. Angewandte Chemie, 2022, 134, .	2.0	6
42	Two-Dimensional Distance Correlation Maps from Pulsed Triple Electron Resonance (TRIER) on Proteins with Three Paramagnetic Centers. Applied Magnetic Resonance, 2018, 49, 1253-1279.	1.2	5
43	Pulsed EPR Methods to Study Biomolecular Interactions. Chimia, 2019, 73, 268.	0.6	5
44	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie, 2021, 133, 11813-11818.	2.0	5
45	Formation and decay of radicals during Vacuum-UV irradiation of poly(dimethylsiloxane). Polymer Degradation and Stability, 2017, 144, 497-507.	5.8	3
46	Cu ²⁺ -Induced self-assembly and amyloid formation of a cyclic <scp>d</scp> , <scp>l</scp> -α-peptide: structure and function. Physical Chemistry Chemical Physics, 2022, 24, 6699-6715.	2.8	3
47	Lowâ€Coordinated Titanium(III) Alkyl—Molecular and Surface—Complexes: Detailed Structure from Advanced EPR Spectroscopy. Angewandte Chemie, 2018, 130, 14741-14745.	2.0	2
48	Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angewandte Chemie, 2021, 133, 16080-16089.	2.0	0