List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116936/publications.pdf Version: 2024-02-01

IDINIA VETTED

#	Article	IF	CITATIONS
1	A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine, 2015, 21, 248-255.	30.7	1,967
2	Methods Used to Evaluate Pain Behaviors in Rodents. Frontiers in Molecular Neuroscience, 2017, 10, 284.	2.9	687
3	Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Frontiers in Molecular Neuroscience, 2017, 10, 174.	2.9	403
4	Conus Venom Peptide Pharmacology. Pharmacological Reviews, 2012, 64, 259-298.	16.0	372
5	Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications, 2014, 5, 3521.	12.8	275
6	Venomics: a new paradigm for natural products-based drug discovery. Amino Acids, 2011, 40, 15-28.	2.7	172
7	An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain, 2013, 154, 1749-1757.	4.2	144
8	A Bayesian model predicts the response of axons to molecular gradients. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10296-10301.	7.1	123
9	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
10	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	3.3	120
11	NaV1.7 as a pain target – From gene to pharmacology. , 2017, 172, 73-100.		104
12	Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO Journal, 2012, 31, 3795-3808.	7.8	103
13	Animal toxins — Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochemical Pharmacology, 2020, 181, 114096.	4.4	97
14	The μ Opioid Agonist Morphine Modulates Potentiation of Capsaicin-Evoked TRPV1 Responses through a Cyclic AMP-Dependent Protein Kinase a Pathway. Molecular Pain, 2006, 2, 1744-8069-2-22.	2.1	96
15	Therapeutic Potential of Cone Snail Venom Peptides (Conopeptides). Current Topics in Medicinal Chemistry, 2012, 12, 1546-1552.	2.1	96
16	Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science, 2021, 371, 386-390.	12.6	96
17	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	3.4	94
18	The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Scientific Reports, 2017, 7, 40127.	3.3	92

#	Article	IF	CITATIONS
19	Characterization of endogenous calcium responses in neuronal cell lines. Biochemical Pharmacology, 2010, 79, 908-920.	4.4	90
20	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 651-663.	3.8	83
21	α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society, 2011, 133, 15866-15869.	13.7	81
22	Neuronal cell lines as model dorsal root ganglion neurons. Molecular Pain, 2016, 12, 174480691664611.	2.1	81
23	Seven novel modulators of the analgesic target <scp>Na_V</scp> 1.7 uncovered using a highâ€throughput venomâ€based discovery approach. British Journal of Pharmacology, 2015, 172, 2445-2458.	5.4	74
24	No Gain, No Pain: Na _V 1.7 as an Analgesic Target. ACS Chemical Neuroscience, 2014, 5, 749-751.	3.5	73
25	Identification and Characterization of ProTx-III [<i>μ</i> -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula <i>Thrixopelma pruriens</i> . Molecular Pharmacology, 2015, 88, 291-303.	2.3	72
26	Golgi Calcium Pump Secretory Pathway Calcium ATPase 1 (SPCA1) Is a Key Regulator of Insulin-like Growth Factor Receptor (IGF1R) Processing in the Basal-like Breast Cancer Cell Line MDA-MB-231. Journal of Biological Chemistry, 2010, 285, 37458-37466.	3.4	71
27	A comprehensive portrait of the venom of the giant red bull ant, <i>Myrmecia gulosa</i> , reveals a hyperdiverse hymenopteran toxin gene family. Science Advances, 2018, 4, eaau4640.	10.3	69
28	Axon guidance by growth-rate modulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5202-5207.	7.1	67
29	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	3.3	67
30	Ciguatera fish poisoning: A first epidemic in Germany highlights an increasing risk for European countries. Toxicon, 2014, 91, 76-83.	1.6	65
31	Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2012, 83, 1562-1571.	4.4	64
32	Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail <i>Conus catus</i> . Journal of Proteome Research, 2015, 14, 4372-4381.	3.7	62
33	Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. Journal of Biological Chemistry, 2016, 291, 17049-17065.	3.4	62
34	Burn Pain: A Systematic and Critical Review of Epidemiology, Pathophysiology, and Treatment. Pain Medicine, 2018, 19, 708-734.	1.9	61
35	Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay. PLoS ONE, 2016, 11, e0160006.	2.5	59
36	Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target. Molecular Pain, 2016, 12, 174480691666536.	2.1	58

IRINA VETTER

#	Article	IF	CITATIONS
37	The pharmacology of voltage-gated sodium channel activators. Neuropharmacology, 2017, 127, 87-108.	4.1	57
38	Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology, 2012, 84, 540-548.	4.4	54
39	The Snake with the Scorpion's Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus). Toxins, 2016, 8, 303.	3.4	53
40	New Insight in Cold Pain: Role of Ion Channels, Modulation, and Clinical Perspectives. Journal of Neuroscience, 2016, 36, 11435-11439.	3.6	52
41	Analgesic treatment of ciguatoxin-induced cold allodynia. Pain, 2013, 154, 1999-2006.	4.2	51
42	Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.	4.4	51
43	Rapid, Opioid-sensitive Mechanisms Involved in Transient Receptor Potential Vanilloid 1 Sensitization. Journal of Biological Chemistry, 2008, 283, 19540-19550.	3.4	50
44	Chemical Engineering and Structural and Pharmacological Characterization of the α-Scorpion Toxin OD1. ACS Chemical Biology, 2013, 8, 1215-1222.	3.4	50
45	Expression and Pharmacology of Endogenous Cav Channels in SH-SY5Y Human Neuroblastoma Cells. PLoS ONE, 2013, 8, e59293.	2.5	50
46	Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control. Therapeutics and Clinical Risk Management, 2005, 1, 279-97.	2.0	49
47	2â€Nitroveratryl as a Photocleavable Thiolâ€Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin. Chemistry - A European Journal, 2014, 20, 9549-9552.	3.3	48
48	Sodium Channels and Venom Peptide Pharmacology. Advances in Pharmacology, 2017, 79, 67-116.	2.0	47
49	Modulatory features of the novel spider toxin μâ€TRTXâ€Df1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	5.4	46
50	The thermal probe test: A novel behavioral assay to quantify thermal paw withdrawal thresholds in mice. Temperature, 2016, 3, 199-207.	3.0	45
51	Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin. Neuro-Oncology, 2014, 16, 1324-1332.	1.2	44
52	The NLRP3 Inflammasome: Role and Therapeutic Potential in Pain Treatment. Frontiers in Physiology, 2020, 11, 1016.	2.8	40
53	The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats. Frontiers in Pharmacology, 2016, 7, 286.	3.5	38
54	Inflammatory and Neuropathic Gene Expression Signatures of Chemotherapy-Induced Neuropathy Induced by Vincristine, Cisplatin, and Oxaliplatin in C57BL/6J Mice. Journal of Pain, 2020, 21, 182-194.	1.4	38

IRINA VETTER

#	Article	IF	CITATIONS
55	Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition. Journal of Neuroscience, 2013, 33, 16627-16641.	3.6	37
56	Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	3.4	37
57	Pharmacological screening technologies for venom peptide discovery. Neuropharmacology, 2017, 127, 4-19.	4.1	36
58	The Evolution of Fangs, Venom, and Mimicry Systems in Blenny Fishes. Current Biology, 2017, 27, 1184-1191.	3.9	36
59	Venom Peptides as a Rich Source of Cav2.2 Channel Blockers. Toxins, 2013, 5, 286-314.	3.4	35
60	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
61	Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain, 2019, 160, 1766-1780.	4.2	35
62	Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Science Signaling, 2017, 10, .	3.6	34
63	Therapeutic opportunities for targeting cold pain pathways. Biochemical Pharmacology, 2015, 93, 125-140.	4.4	33
64	The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE, 2017, 12, e0173551.	2.5	33
65	α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. Journal of the American Chemical Society, 2015, 137, 3209-3212.	13.7	32
66	Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels. Life Sciences, 2018, 198, 128-135.	4.3	32
67	Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24920-24928.	7.1	32
68	Natural Product Ligands of TRP Channels. Advances in Experimental Medicine and Biology, 2011, 704, 41-85.	1.6	31
69	MrIC, a Novel α-Conotoxin Agonist in the Presence of PNU at Endogenous α7 Nicotinic Acetylcholine Receptors. Biochemistry, 2014, 53, 1-3.	2.5	31
70	Design, Synthesis and Biological Evaluation of Two Opioid Agonist and Ca _v 2.2 Blocker Multitarget Ligands. Chemical Biology and Drug Design, 2015, 86, 156-162.	3.2	31
71	Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain, 2016, 157, 2504-2516.	4.2	31
72	Na _V 1.6 regulates excitability of mechanosensitive sensory neurons. Journal of Physiology, 2019, 597, 3751-3768.	2.9	31

#	Article	IF	CITATIONS
73	Minocycline Prevents the Development of Mechanical Allodynia in Mouse Models of Vincristine-Induced Peripheral Neuropathy. Frontiers in Neuroscience, 2019, 13, 653.	2.8	30
74	Development and Optimization of FLIPR High Throughput Calcium Assays for Ion Channels and GPCRs. Advances in Experimental Medicine and Biology, 2012, 740, 45-82.	1.6	30
75	A ray of venom: Combined proteomic and transcriptomic investigation of fish venom composition using barb tissue from the blue-spotted stingray (Neotrygon kuhlii). Journal of Proteomics, 2014, 109, 188-198.	2.4	29
76	Α-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150817.	2.6	29
77	Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. Journal of Experimental Medicine, 2021, 218, .	8.5	29
78	Δâ€Myrtoxinâ€Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membraneâ€Disrupting, and Nociceptive Activities. Angewandte Chemie - International Edition, 2017, 56, 8495-8499.	13.8	28
79	Development of an <i>N</i> -Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain. Journal of Medicinal Chemistry, 2019, 62, 2466-2484.	6.4	28
80	NaV1.1 and NaV1.6 selective compounds reduce the behavior phenotype and epileptiform activity in a novel zebrafish model for Dravet Syndrome. PLoS ONE, 2020, 15, e0219106.	2.5	28
81	Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology. Toxins, 2018, 10, 15.	3.4	27
82	A New Selective Pharmacological Enhancer of the Orai1 Ca ²⁺ Channel Reveals Roles for Orai1 in Smooth and Skeletal Muscle Functions. ACS Pharmacology and Translational Science, 2020, 3, 135-147.	4.9	27
83	Transcriptome and proteome of <i>Conus planorbis</i> identify the nicotinic receptors as primary target for the defensive venom. Proteomics, 2015, 15, 4030-4040.	2.2	26
84	The Effects of pH on Beta-Endorphin and Morphine Inhibition of Calcium Transients in Dorsal Root Ganglion Neurons. Journal of Pain, 2006, 7, 488-499.	1.4	25
85	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie - International Edition, 2017, 56, 14973-14976.	13.8	25
86	Mechanisms involved in potentiation of transient receptor potential vanilloid 1 responses by ethanol. European Journal of Pain, 2008, 12, 441-454.	2.8	24
87	Isolation and Structural and Pharmacological Characterization of α-Elapitoxin-Dpp2d, an Amidated Three Finger Toxin from Black Mamba Venom. Biochemistry, 2014, 53, 3758-3766.	2.5	23
88	Enzymatic Ligation of a Pore Blocker Toxin and a Gating Modifier Toxin: Creating Double-Knotted Peptides with Improved Sodium Channel NaV1.7 Inhibition. Bioconjugate Chemistry, 2020, 31, 64-73.	3.6	23
89	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	2.6	22
90	Role of the NLRP3 inflammasome in a model of acute burn-induced pain. Burns, 2017, 43, 304-309.	1.9	22

#	Article	IF	CITATIONS
91	Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	2.5	22
92	Transcriptomics in pain research: insights from new and old technologies. Molecular Omics, 2018, 14, 389-404.	2.8	22
93	Novel analgesic ï‰-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	3.3	22
94	Ϊ‰-Conotoxin GVIA Mimetics that Bind and Inhibit Neuronal Cav2.2 Ion Channels. Marine Drugs, 2012, 10, 2349-2368.	4.6	20
95	An Integrated Proteomic and Transcriptomic Analysis Reveals the Venom Complexity of the Bullet Ant Paraponera clavata. Toxins, 2020, 12, 324.	3.4	18
96	Activation of Î⁰ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chemical Neuroscience, 2015, 6, 1751-1758.	3.5	17
97	Release of neuropeptides from a neuro-cutaneous co-culture model: A novel inÂvitro model for studying sensory effects of ciguatoxins. Toxicon, 2016, 116, 4-10.	1.6	17
98	Evaluation of known and novel inhibitors of Orai1-mediated store operated Ca 2+ entry in MDA-MB-231 breast cancer cells using a Fluorescence Imaging Plate Reader assay. Bioorganic and Medicinal Chemistry, 2017, 25, 440-449.	3.0	17
99	The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Frontiers in Pharmacology, 2018, 9, 495.	3.5	17
100	A Centipede Toxin Family Defines an Ancient Class of $CS\hat{I}\pm\hat{I}^2$ Defensins. Structure, 2019, 27, 315-326.e7.	3.3	17
101	Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, <i>Doratifera vulnerans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
102	Ciguatera Toxins: Pharmacology, Toxicology, and Detection. , 2014, , 925-950.		17
103	α-conotoxin MrIC is a biased agonist at α7 nicotinic acetylcholine receptors. Biochemical Pharmacology, 2015, 94, 155-163.	4.4	16
104	Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology, 2017, 127, 224-242.	4.1	16
105	Missiles of Mass Disruption: Composition and Glandular Origin of Venom Used as a Projectile Defensive Weapon by the Assassin Bug Platymeris rhadamanthus. Toxins, 2019, 11, 673.	3.4	16
106	Neurotoxic peptides from the venom of the giant Australian stinging tree. Science Advances, 2020, 6, .	10.3	16
107	Mapping the Molecular Surface of the Analgesic NaV1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions. ACS Pharmacology and Translational Science, 2020, 3, 535-546.	4.9	16
108	Optimization and In Vivo Profiling of a Refined Rat Model of Walker 256 Breast Cancer Cell-Induced Bone Pain Using Behavioral, Radiological, Histological, Immunohistochemical and Pharmacological Methods. Frontiers in Pharmacology, 2017, 8, 442.	3.5	15

#	Article	IF	CITATIONS
109	A peptide toxin in ant venom mimics vertebrate EGF-like hormones to cause long-lasting hypersensitivity in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
110	The Response of Dorsal Root Ganglion Axons to Nerve Growth Factor Gradients Depends on Spinal Level. Journal of Neurotrauma, 2010, 27, 1379-1386.	3.4	14
111	Small cyclic sodium channel inhibitors. Biochemical Pharmacology, 2021, 183, 114291.	4.4	14
112	Improving the Gastrointestinal Stability of Linaclotide. Journal of Medicinal Chemistry, 2021, 64, 8384-8390.	6.4	14
113	Pharmacological characterization of α-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): An atypical long-chain α-neurotoxin with only weak affinity for α7 nicotinic receptors. Biochemical Pharmacology, 2012, 84, 851-863.	4.4	13
114	CHAPTER 1. Seeing the Woods for the Trees: Understanding Venom Evolution as a Guide for Biodiscovery. RSC Drug Discovery Series, 2015, , 1-36.	0.3	13
115	Development of a high-throughput fluorescent no-wash sodium influx assay. PLoS ONE, 2019, 14, e0213751.	2.5	13
116	Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. Journal of Biological Chemistry, 2020, 295, 5067-5080.	3.4	13
117	Subcutaneous ω-Conotoxins Alleviate Mechanical Pain in Rodent Models of Acute Peripheral Neuropathy. Marine Drugs, 2021, 19, 106.	4.6	13
118	High-Throughput Fluorescence Assays for Ion Channels and GPCRs. Advances in Experimental Medicine and Biology, 2020, 1131, 27-72.	1.6	13
119	Buzz Kill: Function and Proteomic Composition of Venom from the Giant Assassin Fly Dolopus genitalis (Diptera: Asilidae). Toxins, 2018, 10, 456.	3.4	12
120	Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochemical Pharmacology, 2019, 164, 342-348.	4.4	12
121	Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible NaV Channel Inhibitor. Biomedicines, 2020, 8, 391.	3.2	12
122	It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia pilosula. Biomedicines, 2020, 8, 185.	3.2	12
123	The zebrafish <i>grime</i> mutant uncovers an evolutionarily conserved role for Tmem161b in the control of cardiac rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
124	Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives. Marine Drugs, 2015, 13, 2030-2045.	4.6	11
125	Venom chemistry underlying the painful stings of velvet ants (Hymenoptera: Mutillidae). Cellular and Molecular Life Sciences, 2021, 78, 5163-5177.	5.4	11
126	Multipurpose peptides: The venoms of Amazonian stinging ants contain anthelmintic ponericins with diverse predatory and defensive activities. Biochemical Pharmacology, 2021, 192, 114693.	4.4	10

#	Article	IF	CITATIONS
127	Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. Australian Journal of Chemistry, 2017, 70, 162.	0.9	9
128	The E15R Point Mutation in Scorpion Toxin Cn2 Uncouples Its Depressant and Excitatory Activities on Human Na _V 1.6. Journal of Medicinal Chemistry, 2018, 61, 1730-1736.	6.4	9
129	An SAR study of hydroxy-trifluoromethylpyrazolines as inhibitors of Orai1-mediated store operated Ca2+ entry in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader assay. Bioorganic and Medicinal Chemistry, 2018, 26, 3406-3413.	3.0	9
130	Characterisation of a Novel A-Superfamily Conotoxin. Biomedicines, 2020, 8, 128.	3.2	9
131	Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. Journal of Biological Chemistry, 2022, 298, 101728.	3.4	9
132	A kinase-dead <i>Csf1r</i> mutation associated with adult-onset leukoencephalopathy has a dominant inhibitory impact on CSF1R signalling. Development (Cambridge), 2022, 149, .	2.5	9
133	Characterization of Synthetic Tf2 as a NaV1.3 Selective Pharmacological Probe. Biomedicines, 2020, 8, 155.	3.2	8
134	Chemotactic responses of growing neurites to precisely controlled gradients of nerve growth factor. Scientific Data, 2018, 5, 180183.	5.3	8
135	Vps26Bâ€retromer negatively regulates plasma membrane resensitization of PARâ€2. Cell Biology International, 2015, 39, 1299-1306.	3.0	7
136	Recombinant production, bioconjugation and membrane binding studies of Pn3a, a selective NaV1.7 inhibitor. Biochemical Pharmacology, 2020, 181, 114148.	4.4	7
137	Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochemical Pharmacology, 2020, 181, 114080.	4.4	7
138	A pain-causing and paralytic ant venom glycopeptide. IScience, 2021, 24, 103175.	4.1	7
139	Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
140	Feeling hot, feeling cold: TRP channels—a great story unfolds. Temperature, 2015, 2, 150-151.	3.0	6
141	Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica. PLoS ONE, 2016, 11, e0156291.	2.5	6
142	Addition of K22 Converts Spider Venom Peptide Pme2a from an Activator to an Inhibitor of NaV1.7. Biomedicines, 2020, 8, 37.	3.2	6
143	The Allosteric Activation of α7 nAChR by α-Conotoxin MrIC Is Modified by Mutations at the Vestibular Site. Toxins, 2021, 13, 555.	3.4	5
144	Engineering of a Spider Peptide via Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition In Vitro and Anti-Nociception In Vivo. Frontiers in Molecular Biosciences, 2021, 8, 742457.	3.5	5

#	Article	IF	CITATIONS
145	Polygodial, a drimane sesquiterpenoid dialdehyde purified from <i>Drimys winteri</i> , inhibits voltage-gated sodium channels. Natural Product Research, 2022, 36, 6318-6323.	1.8	5
146	Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system. Nature Communications, 2022, 13, 260.	12.8	5
147	Neurotoxic and cytotoxic peptides underlie the painful stings of the tree nettle Urtica ferox. Journal of Biological Chemistry, 2022, 298, 102218.	3.4	5
148	Ciguatoxin and Ciguatera. , 2016, , 71-92.		4
149	Role of complement anaphylatoxin receptors in a mouse model of acute burn-induced pain. Molecular Immunology, 2018, 94, 68-74.	2.2	4
150	Pharmacology and therapeutic potential of venom peptides. Biochemical Pharmacology, 2020, 181, 114207.	4.4	4
151	Evaluation of Efficient Non-reducing Enzymatic and Chemical Ligation Strategies for Complex Disulfide-Rich Peptides. Bioconjugate Chemistry, 2021, 32, 2407-2419.	3.6	4
152	The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation. Frontiers in Pharmacology, 2021, 12, 789570.	3.5	4
153	(-)-Pentylsedinine, a New Alkaloid from the Leaves of Lobelia Tupa with Agonist Activity at Nicotinic Acetylcholine Receptor. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	3
154	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie, 2017, 129, 15169-15172.	2.0	3
155	Novel Neurotoxic Activity in Calliophis intestinalis Venom. Neurotoxicity Research, 2022, 40, 173-178.	2.7	3
156	Does Nature do Ion Channel Drug Discovery Better than Us?. RSC Drug Discovery Series, 2014, , 297-319.	0.3	2
157	CHAPTER 4. Venoms-Based Drug Discovery: Bioassays, Electrophysiology, High-Throughput Screens andÂTarget Identification. RSC Drug Discovery Series, 2015, , 97-128.	0.3	2
158	Transcriptomic characterisation of the optimised rat model of Walker 256 breast cancer cellâ€induced bone pain. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 1201-1215.	1.9	2
159	Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochemical Pharmacology, 2020, 181, 114082.	4.4	2
160	Toxins in Neurobiology: New tools from old molecules. Neuroscience Letters, 2018, 679, 1-3.	2.1	1
161	Expression of the C Protein-Coupled Receptor 68 is Increased by TNF-Mediated Inflammatory Signalling. Gastroenterology, 2011, 140, S-837-S-838.	1.3	0
162	32. Development of High Throughput Calcium ChannelÂAssays to Accelerate the Discovery of NovelÂToxins Targeting Human Cav2.2 Channels. Toxicon, 2012, 60, 111.	1.6	0

#	Article	IF	CITATIONS
163	Rational Design and Synthesis of a Novel Membrane Binding NaV1.8 Selective Inhibitor with in vivo Activity in Pain Models. Biophysical Journal, 2016, 110, 33a.	0.5	0
164	How hot is it Down Under?. Temperature, 2016, 3, 355-357.	3.0	0
165	Ciguatoxin and Ciguatera. , 2015, , 1-19.		0
166	Molecular Pharmacology of Pain-inducing Venom Peptides. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY66-4.	0.0	0
167	Low potency inhibition of NaV1.7 by externally applied QX-314 via a depolarizing shift in the voltage-dependence of activation. European Journal of Pharmacology, 2022, , 175013.	3.5	0