Katharina Paschinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116817/publications.pdf

Version: 2024-02-01

68 papers

2,237 citations

28 h-index 243625 44 g-index

70 all docs

70 docs citations

70 times ranked

1610 citing authors

#	Article	IF	CITATIONS
1	Glycobiology of Caenorhabditis elegans. , 2021, , 36-54.		O
2	Negativeâ€mode mass spectrometry in the analysis of invertebrate, fungal, and protist Nâ€glycans. Mass Spectrometry Reviews, 2021, , .	5.4	5
3	Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconjugate Journal, 2020, 37, 27-40.	2.7	22
4	Insights into the salivary N-glycome of Lutzomyia longipalpis, vector of visceral leishmaniasis. Scientific Reports, 2020, 10, 12903.	3.3	5
5	Biochemical Characterization of Oyster and Clam Galectins: Selective Recognition of Carbohydrate Ligands on Host Hemocytes and Perkinsus Parasites. Frontiers in Chemistry, 2020, 8, 98.	3.6	11
6	Glycosylation at an evolutionary nexus: the brittle star Ophiactis savignyi expresses both vertebrate and invertebrate N-glycomic features. Journal of Biological Chemistry, 2020, 295, 3173-3188.	3.4	12
7	Sulfated and sialylated N-glycans in the echinoderm Holothuria atra reflect its marine habitat and phylogeny. Journal of Biological Chemistry, 2020, 295, 3159-3172.	3.4	9
8	Zwitterionic Phosphodiester-Substituted Neoglycoconjugates as Ligands for Antibodies and Acute Phase Proteins. ACS Chemical Biology, 2020, 15, 369-377.	3.4	6
9	Tissue-specific glycosylation in the honeybee: Analysis of the N-glycomes of Apis mellifera larvae and venom. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129409.	2.4	15
10	Comparisons of N-glycans across invertebrate phyla. Parasitology, 2019, 146, 1733-1742.	1.5	26
11	N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode?. Frontiers in Molecular Biosciences, 2019, 6, 9.	3.5	20
12	Highly modified and immunoactive N-glycans of the canine heartworm. Nature Communications, 2019, 10, 75.	12.8	36
13	Protein-Specific Analysis of Invertebrate Glycoproteins. Methods in Molecular Biology, 2019, 1871, 421-435.	0.9	3
14	Definition of immunogenic carbohydrate epitopes Acta Biochimica Polonica, 2019, 52, 629-632.	0.5	24
15	Core Richness of N-Glycans of <i>Caenorhabditis elegans</i> Release. Analytical Chemistry, 2018, 90, 928-935.	6.5	35
16	The parasitic nematode Oesophagostomum dentatum synthesizes unusual glycosaminoglycan-like O-glycans. Glycobiology, 2018, 28, 474-481.	2.5	15
17	Ablation of N-acetylglucosaminyltransferases in Caenorhabditis induces expression of unusual intersected and bisected N-glycans. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2191-2203.	2.4	12
18	Isomeric Separation and Recognition of Anionic and Zwitterionic N-glycans from Royal Jelly Glycoproteins. Molecular and Cellular Proteomics, 2018, 17, 2177-2196.	3.8	26

#	Article	IF	Citations
19	Glycomics Studies on Nematodes Elucidate Conserved Functional Epitopes and Biosynthetic Pathways. FASEB Journal, 2018, 32, 673.17.	0.5	0
20	The underestimated N-glycomes of lepidopteran species. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 699-714.	2.4	47
21	Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic <i>Dictyostelium</i> Nâ€glycans. Electrophoresis, 2017, 38, 2175-2183.	2.4	11
22	Analysis of Invertebrate and Protist N-Glycans. Methods in Molecular Biology, 2017, 1503, 167-184.	0.9	20
23	Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 418-430.	2.4	29
24	Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconjugate Journal, 2016, 33, 273-283.	2.7	23
25	Sweet secrets of a therapeutic worm: mass-spectrometric N-glycomic analysis of Trichuris suis. Analytical and Bioanalytical Chemistry, 2016, 408, 461-471.	3.7	27
26	The fucomic potential of mosquitoes: Fucosylated N-glycan epitopes and their cognate fucosyltransferases. Insect Biochemistry and Molecular Biology, 2016, 68, 52-63.	2.7	17
27	Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail. Molecular and Cellular Proteomics, 2016, 15, 573-597.	3.8	38
28	More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species. Molecular and Cellular Proteomics, 2016, 15, 73-92.	3.8	30
29	Comparisons of <i>Caenorhabditis</i> Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures. Journal of Proteome Research, 2015, 14, 5291-5305.	3.7	29
30	Comparison of RPâ€HPLC modes to analyse the Nâ€glycome of the freeâ€living nematode <i>Pristionchus pacificus</i> . Electrophoresis, 2015, 36, 1314-1329.	2.4	37
31	Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. Journal of Proteomics, 2015, 126, 172-188.	2.4	59
32	Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus. Glycobiology, 2015, 25, 585-590.	2.5	35
33	Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2111-2125.	3.8	32
34	Comparative Glycobiology. , 2015, , 795-805.		3
35	<i>N</i> â€glycomic profiling of a glucosidase II mutant of <i>Dictyostelium discoideum</i> by   offâ€line†liquid chromatography and mass spectrometry. Electrophoresis, 2014, 35, 2116-2129.	™â€™ 2.4	15
36	Comparative Glycobiology. , 2014, , 1-10.		1

#	Article	IF	CITATIONS
37	Hemocytes and Plasma of the Eastern Oyster (Crassostrea virginica) Display a Diverse Repertoire of Sulfated and Blood Group A-modified N-Glycans*. Journal of Biological Chemistry, 2013, 288, 24410-24428.	3.4	49
38	N-Glycomic and N-Glycoproteomic Studies in the Social Amoebae. Methods in Molecular Biology, 2013, 983, 205-229.	0.9	11
39	Mass Spectrometric Analysis of Neutral and Anionic N-Glycans from a <i>Dictyostelium discoideum</i> Model for Human Congenital Disorder of Glycosylation CDG IL. Journal of Proteome Research, 2013, 12, 1173-1187.	3.7	36
40	Array-assisted Characterization of a Fucosyltransferase Required for the Biosynthesis of Complex Core Modifications of Nematode N-Glycans. Journal of Biological Chemistry, 2013, 288, 21015-21028.	3.4	33
41	Exploring the Unique N-Glycome of the Opportunistic Human Pathogen Acanthamoeba. Journal of Biological Chemistry, 2012, 287, 43191-43204.	3.4	20
42	Galactosylated Fucose Epitopes in Nematodes. Journal of Biological Chemistry, 2012, 287, 28276-28290.	3.4	43
43	Complicated N-linked glycans in simple organisms. Biological Chemistry, 2012, 393, 661-673.	2.5	69
44	The N-glycans of Trichomonas vaginalis contain variable core and antennal modifications. Glycobiology, 2012, 22, 300-313.	2.5	60
45	Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5. International Journal for Parasitology, 2012, 42, 279-285.	3.1	39
46	Glycomarkers in parasitic infections and allergy. Biochemical Society Transactions, 2011, 39, 360-364.	3.4	9
47	Presence of galactosylated core fucose on Nâ€glycans in the planaria <i>Dugesia japonica</i> . Journal of Mass Spectrometry, 2011, 46, 561-567.	1.6	28
48	Distantly related plant and nematode core α1,3-fucosyltransferases display similar trends in structure–function relationships. Glycobiology, 2011, 21, 1401-1415.	2.5	21
49	Caenorhabditis elegans N-glycan Core \hat{l}^2 -galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2. PLoS Pathogens, 2010, 6, e1000717.	4.7	95
50	Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconjugate Journal, 2009, 26, 385-395.	2.7	65
51	Specificity analysis of lectins and antibodies using remodeled glycoproteins. Analytical Biochemistry, 2009, 386, 133-146.	2.4	124
52	The N-glycosylation pattern of Caenorhabditis elegans. Carbohydrate Research, 2008, 343, 2041-2049.	2.3	78
53	Biosynthesis of Truncated N-Linked Oligosaccharides Results from Non-orthologous Hexosaminidase-mediated Mechanisms in Nematodes, Plants, and Insects. Journal of Biological Chemistry, 2007, 282, 27825-27840.	3.4	84
54	Molecular and immunological characterization of the glycosylated orange allergen Cit s 1 . Glycobiology, 2007, 17 , 220-230.	2.5	23

#	Article	IF	CITATIONS
55	Towards abolition of immunogenic structures in insect cells: characterization of a honey-bee (Apis) Tj ETQq1 1 0 insect Lewis-histo-blood-group-related antigen-synthesizing enzyme. Biochemical Journal, 2007, 402, 105-115.	3.7 3.7	gBT /Overlo <mark>ck</mark> 27
56	N-Glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS Journal, 2007, 274, 714-726.	4.7	51
57	Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS Journal, 2006, 273, 2244-2256.	4.7	22
58	Comparative characterisation of recombinant invertebrate and vertebrate peptide O-Xylosyltransferases. Glycoconjugate Journal, 2006, 23, 543-554.	2.7	20
59	Comparison of the proteome profiles of Entamoeba histolytica and its close but non-pathogenic relative Entamoeba dispar. Wiener Klinische Wochenschrift, 2006, 118, 37-41.	1.9	9
60	A Deletion in the Golgi α-Mannosidase II Gene of Caenorhabditis elegans Results in Unexpected Non-wild-type N-Glycan Structures. Journal of Biological Chemistry, 2006, 281, 28265-28277.	3.4	44
61	Modulation of Neural Carbohydrate Epitope Expression in Drosophila melanogaster Cells. Journal of Biological Chemistry, 2006, 281, 3343-3353.	3.4	44
62	Entamoeba histolytica: Analysis of the trophozoite proteome by two-dimensional polyacrylamide gel electrophoresis. Experimental Parasitology, 2005, 110, 191-195.	1.2	24
63	Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology, 2005, 15, 463-474.	2.5	109
64	Definition of immunogenic carbohydrate epitopes. Acta Biochimica Polonica, 2005, 52, 629-32.	0.5	13
65	Molecular Basis of Anti-horseradish Peroxidase Staining in Caenorhabditis elegans. Journal of Biological Chemistry, 2004, 279, 49588-49598.	3.4	74
66	A genetic and structural analysis of the -glycosylation capabilities. Plant Molecular Biology, 2004, 55, 631-644.	3.9	44
67	The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying $\hat{l}\pm 1,4$ -N-acetylgalactosaminyltransferase. Biochemical Journal, 2004, 382, 67-74.	3.7	21
68	Schistosome Nâ€glycans containing core α3â€fucose and core β2â€xylose epitopes are strong inducers of Th2 responses in mice. European Journal of Immunology, 2003, 33, 1271-1281.	2.9	110