Randall J Basaraba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4116243/publications.pdf

Version: 2024-02-01

72 papers 4,602 citations

38 h-index 106344 65 g-index

74 all docs

74 docs citations

74 times ranked 4708 citing authors

#	Article	IF	CITATIONS
1	The Impact of Vitamin A Deficiency on Tuberculosis Progression. Clinical Infectious Diseases, 2022, , .	5.8	6
2	Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Frontiers in Cellular and Infection Microbiology, 2021, 11, 624607.	3.9	18
3	Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nature Communications, 2020, 11, 5225.	12.8	40
4	Metformin enhances protection in guinea pigs chronically infected with Mycobacterium tuberculosis. Scientific Reports, 2020, 10, 16257.	3.3	15
5	Cyclin-Dependent Kinases 8 and 19 Regulate Host Cell Metabolism during Dengue Virus Serotype 2 Infection. Viruses, 2020, 12, 654.	3.3	7
6	A mouse model of pulmonary Mycobacteroides abscessus infection. Scientific Reports, 2020, 10, 3690.	3.3	41
7	2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Scientific Reports, 2019, 9, 1513.	3.3	23
8	Analogue synthesis reveals decoupling of antibiofilm and βâ€lactam potentiation activities of a lead 2â€aminoimidazole adjuvant against Mycobacterium smegmatis. Chemical Biology and Drug Design, 2018, 92, 1403-1408.	3.2	8
9	Topical therapy for refractory rhinosinusitis caused by methicillin-resistant Staphylococcus aureus : First report in a prospective series. Auris Nasus Larynx, 2018, 45, 994-999.	1.2	4
10	A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment. DMM Disease Models and Mechanisms, 2017, 10, 151-162.	2.4	40
11	The Discovery of 2â€Aminobenzimidazoles That Sensitize <i>Mycobacterium smegmatis</i> and <i>M.â€tuberculosis</i> to βâ€Lactam Antibiotics in a Pattern Distinct from βâ€Lactamase Inhibitors. Angewandte Chemie - International Edition, 2017, 56, 3940-3944.	13.8	23
12	The Discovery of 2â€Aminobenzimidazoles That Sensitize <i>Mycobacterium smegmatis</i> and <i>M.â€tuberculosis</i> to βâ€Lactam Antibiotics in a Pattern Distinct from βâ€Lactamase Inhibitors. Angewandte Chemie, 2017, 129, 3998-4002.	2.0	1
13	Defining a Research Agenda to Address theÂConverging Epidemics of Tuberculosis and Diabetes. Chest, 2017, 152, 165-173.	0.8	74
14	Defining a Research Agenda to Address theÂConverging Epidemics of Tuberculosis and Diabetes. Chest, 2017, 152, 174-180.	0.8	57
15	Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. Microbiology Spectrum, 2017, 5, .	3.0	36
16	Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. Microbiology Spectrum, 2017, 5, .	3.0	38
17	2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability. PLoS ONE, 2017, 12, e0180925.	2.5	20
18	Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Seminars in Immunopathology, 2016, 38, $167-183$.	6.1	96

#	Article	IF	CITATIONS
19	Functional drug screening reveals anticonvulsants as enhancers of mTORâ€independent autophagic killing of <i>Mycobacterium tuberculosis</i> through inositol depletion. EMBO Molecular Medicine, 2015, 7, 127-139.	6.9	137
20	Inhibition and breaking of advanced glycation end-products (AGEs) with bis-2-aminoimidazole derivatives. Tetrahedron Letters, 2015, 56, 3406-3409.	1.4	10
21	Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with <i>Mycobacterium tuberculosis</i> . DMM Disease Models and Mechanisms, 2015, 8, 591-602.	2.4	127
22	Second generation 2-aminoimidazole based advanced glycation end product inhibitors and breakers. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4820-4823.	2.2	15
23	Human IL-32 expression protects mice against a hypervirulent strain of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5111-5116.	7.1	43
24	GM-CSF knockout mice for preclinical testing of agents with antimicrobial activity against Mycobacterium abscessus. Journal of Antimicrobial Chemotherapy, 2014, 69, 1057-1064.	3.0	49
25	The formation of the granuloma in tuberculosis infection. Seminars in Immunology, 2014, 26, 601-609.	5.6	154
26	Expression of antimicrobial drug tolerance by attached communities of <i>Mycobacterium tuberculosis </i> . Pathogens and Disease, 2014, 70, 359-369.	2.0	58
27	Mucosal expression of aquaporin 5 and epithelial barrier proteins in chronic rhinosinusitis with and without nasal polyps. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2014, 35, 377-383.	1.3	21
28	Therapeutic vaccination against relevant high virulence clinical isolates of Mycobacterium tuberculosis. Tuberculosis, 2014, 94, 140-147.	1.9	11
29	Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathogens and Disease, 2014, 70, 370-378.	2.0	35
30	Microhemorrhage is an early event in the pulmonary fibrotic disease of PECAM-1 deficient FVB/n mice. Experimental and Molecular Pathology, 2014, 97, 128-136.	2.1	6
31	Increased Severity of Tuberculosis in Guinea Pigs with Type 2 Diabetes. American Journal of Pathology, 2014, 184, 1104-1118.	3.8	58
32	Evaluation of a Mouse Model of Necrotic Granuloma Formation Using C3HeB/FeJ Mice for Testing of Drugs against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3181-3195.	3.2	212
33	Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine, 2012, 30, 1572-1582.	3.8	17
34	Non-Diabetic Hyperglycemia Exacerbates Disease Severity in Mycobacterium tuberculosis Infected Guinea Pigs. PLoS ONE, 2012, 7, e46824.	2.5	39
35	Uptake and Accumulation of Oxidized Low-Density Lipoprotein during Mycobacterium tuberculosis Infection in Guinea Pigs. PLoS ONE, 2012, 7, e34148.	2.5	39
36	Vaccination of guinea pigs using mce operon mutants of Mycobacterium tuberculosis. Vaccine, 2011, 29, 4302-4307.	3.8	6

#	Article	IF	CITATIONS
37	Location of Intra- and Extracellular M. tuberculosis Populations in Lungs of Mice and Guinea Pigs during Disease Progression and after Drug Treatment. PLoS ONE, 2011, 6, e17550.	2.5	112
38	Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis, 2011, 91, 329-338.	1.9	77
39	Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis. Tuberculosis, 2011, 91, 378-385.	1.9	50
40	Copper resistance is essential for virulence of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1621-1626.	7.1	286
41	Activities of TMC207, Rifampin, and Pyrazinamide against <i>Mycobacterium tuberculosis</i> Infection in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2011, 55, 124-131.	3.2	46
42	Mycobacterium bovis BCG-Mediated Protection against W-Beijing Strains of Mycobacterium tuberculosis Is Diminished Concomitant with the Emergence of Regulatory T Cells. Vaccine Journal, 2011, 18, 1527-1535.	3.1	81
43	Evidence for Oxidative Stress and Defective Antioxidant Response in Guinea Pigs with Tuberculosis. PLoS ONE, 2011, 6, e26254.	2.5	112
44	Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime–boost regimen. Vaccine, 2010, 28, 1084-1093.	3.8	58
45	Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach. PLoS ONE, 2010, 5, e11108.	2.5	67
46	Evaluation of Standard Chemotherapy in the Guinea Pig Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2010, 54, 1820-1833.	3.2	79
47	Flexible low-cost system for small animal aerosol inhalation exposure to drugs, proteins, inflammatory agents, and infectious agents. BioTechniques, 2009, 46, Piii-Pviii.	1.8	13
48	Post-exposure vaccination against Mycobacterium tuberculosis. Tuberculosis, 2009, 89, 142-148.	1.9	22
49	Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis, 2009, 89, 203-209.	1.9	67
50	Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis, 2008, 88, S35-S47.	1.9	108
51	Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig. Tuberculosis, 2008, 88, 69-79.	1.9	45
52	Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis, 2008, 88, 295-306.	1.9	89
53	Influence of <i>Mycobacterium bovis</i> BCG Vaccination on Cellular Immune Response of Guinea Pigs Challenged with <i>Mycobacterium tuberculosis</i> Vaccine Journal, 2008, 15, 1248-1258.	3.1	48
54	Metronidazole Lacks Antibacterial Activity in Guinea Pigs Infected with <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 4137-4140.	3.2	38

#	Article	IF	Citations
55	Animal model of <i>Mycobacterium abscessus </i> lung infection. Journal of Leukocyte Biology, 2008, 83, 1502-1511.	3.3	110
56	The Hypervirulent <i>Mycobacterium tuberculosis</i> Strain HN878 Induces a Potent TH1 Response followed by Rapid Down-Regulation. Journal of Immunology, 2007, 179, 522-531.	0.8	231
57	Location of Persisting Mycobacteria in a Guinea Pig Model of Tuberculosis Revealed by R207910. Antimicrobial Agents and Chemotherapy, 2007, 51, 3338-3345.	3.2	225
58	The Cellular Immune Response toMycobacterium tuberculosisInfection in the Guinea Pig. Journal of Immunology, 2007, 179, 2532-2541.	0.8	101
59	In Vivo Adaptation of the Wayne Model of Latent Tuberculosis. Infection and Immunity, 2007, 75, 2621-2625.	2.2	23
60	Role for Matrix Metalloproteinase 9 in Granuloma Formation during Pulmonary Mycobacterium tuberculosis Infection. Infection and Immunity, 2006, 74, 6135-6144.	2.2	160
61	Decreased survival of guinea pigs infected with Mycobacterium tuberculosis after multiple BCG vaccinations. Vaccine, 2006, 24, 280-286.	3.8	44
62	Lymphadenitis as a major element of disease in the guinea pig model of tuberculosis. Tuberculosis, 2006, 86, 386-394.	1.9	53
63	Pulmonary Lymphatics Are Primary Sites of Mycobacterium tuberculosis Infection in Guinea Pigs Infected by Aerosol. Infection and Immunity, 2006, 74, 5397-5401.	2.2	74
64	Oral Therapy Using Nanoparticle-Encapsulated Antituberculosis Drugs in Guinea Pigs Infected with Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2005, 49, 4335-4338.	3.2	46
65	The Protective Effect of the Mycobacterium bovis BCG Vaccine Is Increased by Coadministration with the Mycobacterium tuberculosis 72-Kilodalton Fusion Polyprotein Mtb72F in M. tuberculosis -Infected Guinea Pigs. Infection and Immunity, 2004, 72, 6622-6632.	2.2	166
66	Magnetic Resonance Imaging of Pulmonary Lesions in Guinea Pigs Infected with Mycobacterium tuberculosis. Infection and Immunity, 2004, 72, 5963-5971.	2.2	50
67	Pulmonary Necrosis Resulting from DNA Vaccination against Tuberculosis. Infection and Immunity, 2003, 71, 2192-2198.	2.2	119
68	Immunopathogenesis of Pulmonary Granulomas in the Guinea Pig after Infection with Mycobacterium tuberculosis. Infection and Immunity, 2003, 71, 864-871.	2.2	161
69	Increased neutrophil influx but no impairment of protective immunity to tuberculosis in mice lacking the CD44 molecule. Journal of Leukocyte Biology, 2003, 74, 992-997.	3.3	20
70	Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. , 0, , 533-539.		2
71	Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. , 0, , 117-129.		1
72	Granuloma Formation in Mouse and Guinea Pig Models of Experimental Tuberculosis., 0,, 65-84.		28