Sunghoon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115698/publications.pdf

Version: 2024-02-01

38 papers 3,489 citations

20 h-index 36 g-index

38 all docs 38 docs citations

38 times ranked 4626 citing authors

#	Article	IF	CITATIONS
1	Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 2017, 12, 907-913.	31.5	820
2	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.	31.5	680
3	Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 2020, 370, 966-970.	12.6	361
4	Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature Nanotechnology, 2019, 14, 156-160.	31.5	195
5	A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Science Advances, 2020, 6, eabb7043.	10.3	155
6	Selfâ€Adhesive and Ultraâ€Conformable, Subâ€300 nm Dry Thinâ€Film Electrodes for Surface Monitoring of Biopotentials. Advanced Functional Materials, 2018, 28, 1803279.	14.9	136
7	A conformable imager for biometric authentication and vital sign measurement. Nature Electronics, 2020, 3, 113-121.	26.0	134
8	All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7063-7070.	7.1	110
9	Highly Durable Nanofiber-Reinforced Elastic Conductors for Skin-Tight Electronic Textiles. ACS Nano, 2019, 13, 7905-7912.	14.6	103
10	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	14.9	100
11	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	38.1	85
12	Ultrathin Organic Electrochemical Transistor with Nonvolatile and Thin Gel Electrolyte for Longâ€Term Electrophysiological Monitoring. Advanced Functional Materials, 2019, 29, 1906982.	14.9	79
13	On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Science Advances, 2022, 8, .	10.3	58
14	Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	57
15	Organic Photovoltaics: Toward Self-Powered Wearable Electronics. Proceedings of the IEEE, 2019, 107, 2137-2154.	21.3	56
16	Highâ€Frequency, Conformable Organic Amplifiers. Advanced Materials, 2016, 28, 3298-3304.	21.0	49
17	Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21138-21146.	7.1	44
18	Reduction in interface state density of Al2O3/InGaAs metal-oxide-semiconductor interfaces by InGaAs surface nitridation. Journal of Applied Physics, 2012, 112, 073702.	2.5	41

#	Article	IF	CITATIONS
19	Nanomesh Organic Electrochemical Transistor for Comfortable On-Skin Electrodes with Local Amplifying Function. ACS Applied Electronic Materials, 2020, 2, 3601-3609.	4.3	26
20	Self-aligned metal source/drain InP n-metal-oxide-semiconductor field-effect transistors using Ni–InP metallic alloy. Applied Physics Letters, 2011, 98, 243501.	3.3	21
21	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nature Communications, 2021, 12, 4937.	12.8	19
22	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality (Adv. Funct.) Tj ETQq0 0	0 rgBT/Ο\	verlock 10 Tf
23	A field-cycle-induced high-dielectric phase in ferroelectric copolymer. Journal of Applied Physics, 2010, 107, 114506.	2.5	17
24	Organic electronics Axon-Hillock neuromorphic circuit: towards biologically compatible, and physically flexible, integrate-and-fire spiking neural networks. Journal Physics D: Applied Physics, 2021, 54, 104004.	2.8	16
25	A Mechanically Durable and Flexible Organic Rectifying Diode with a Polyethylenimine Ethoxylated Cathode. Advanced Electronic Materials, 2016, 2, 1600259.	5.1	15
26	High‶ransconductance Organic Electrochemical Transistor Fabricated on Ultrathin Films Using Spray Coating. Small Structures, 2021, 2, 2000088.	12.0	15
27	An organic transistor matrix for multipoint intracellular action potential recording. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	15
28	Programmable Neuron Array Based on a 2-Transistor Multiplier Using Organic Floating-Gate for Intelligent Sensors. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 81-91.	3.6	12
29	Gasâ€Permeable Organic Electrochemical Transistor Embedded with a Porous Solidâ€State Polymer Electrolyte as an onâ€Skin Active Electrode for Electrophysiological Signal Acquisition. Advanced Functional Materials, 2022, 32, .	14.9	12
30	Highly Precise, Continuous, Longâ€Term Monitoring of Skin Electrical Resistance by Nanomesh Electrodes. Advanced Healthcare Materials, 2022, 11, e2102425.	7.6	10
31	Antimicrobial second skin using copper nanomesh. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	10
32	High Sensitivity Tuning of Work Function of Self-Assembled Monolayers Modified Electrodes Using Vacuum Ultraviolet Treatment. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28151-28156.	8.0	7
33	Molecular doping of near-infrared organic photodetectors for photoplethysmogram sensors. Journal of Materials Chemistry C, 2021, 9, 3129-3135.	5 . 5	6
34	Suppressing Dark Current in Organic Phototransistors through Modulating Electron Injection via a Deep Work Function Electrode. ACS Applied Electronic Materials, 2019, 1, 1054-1058.	4.3	4
35	Enhancement of Closed-Loop Gain of Organic Amplifiers Using Double Gate Structures. IEEE Electron Device Letters, 2016, , 1-1.	3.9	1
36	Continuous measurement of surface electrical potentials from transplanted cardiomyocyte tissue derived from human-induced pluripotent stem cells under physiological conditions in vivo. Heart and Vessels, 2021, 36, 899-909.	1,2	1

SUNGHOON LEE

#	Article	lF	CITATIONS
37	Liquid Crystals: A Mechanically Durable and Flexible Organic Rectifying Diode with a Polyethylenimine Ethoxylated Cathode (Adv. Electron. Mater. 10/2016). Advanced Electronic Materials, 2016, 2, .	5.1	O
38	55â€2: <i>Invited Paper:</i> Nanomesh Based on Skin Electronics. Digest of Technical Papers SID International Symposium, 2021, 52, 768-771.	0.3	0