Koichi Iwata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/411556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astroglia in Medullary Dorsal Horn (Trigeminal Spinal Subnucleus Caudalis) Are Involved in Trigeminal Neuropathic Pain Mechanisms. Journal of Neuroscience, 2009, 29, 11161-11171.	3.6	180
2	Medullary Dorsal Horn Neuronal Activity in Rats with Persistent Temporomandibular Joint and Perioral Inflammation. Journal of Neurophysiology, 1999, 82, 1244-1253.	1.8	120
3	Role of Glia in Orofacial Pain. Neuroscientist, 2011, 17, 303-320.	3.5	114
4	Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats. Pain, 2004, 111, 323-334.	4.2	103
5	Alteration of Medullary Dorsal Horn Neuronal Activity Following Inferior Alveolar Nerve Transection in Rats. Journal of Neurophysiology, 2001, 86, 2868-2877.	1.8	88
6	Anterior Cingulate Cortical Neuronal Activity During Perception of Noxious Thermal Stimuli in Monkeys. Journal of Neurophysiology, 2005, 94, 1980-1991.	1.8	86
7	Plastic Changes in Nociceptive Transmission of the Rat Spinal Cord With Advancing Age. Journal of Neurophysiology, 2002, 87, 1086-1093.	1.8	85
8	Organization of pERKâ€immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats. Journal of Comparative Neurology, 2008, 507, 1428-1440.	1.6	85
9	Oxytocin alleviates orofacial mechanical hypersensitivity associated with infraorbital nerve injury through vasopressin-1A receptors of the rat trigeminal ganglia. Pain, 2017, 158, 649-659.	4.2	65
10	Phosphorylation of Extracellular Signal-Regulated Kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation. Brain Research, 2006, 1072, 99-109.	2.2	59
11	Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Molecular Pain, 2016, 12, 174480691663370.	2.1	58
12	Peripheral and Central Mechanisms of Persistent Orofacial Pain. Frontiers in Neuroscience, 2019, 13, 1227.	2.8	58
13	Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain. Brain Research, 2012, 1451, 74-86.	2.2	57
14	Macrophages in trigeminal ganglion contribute to ectopic mechanical hypersensitivity following inferior alveolar nerve injury in rats. Journal of Neuroinflammation, 2017, 14, 249.	7.2	49
15	Fractalkine Signaling in Microglia Contributes to Ectopic Orofacial Pain following Trapezius Muscle Inflammation. Journal of Neuroscience, 2013, 33, 7667-7680.	3.6	48
16	Recent advances in basic research on the trigeminal ganglion. Journal of Physiological Sciences, 2016, 66, 381-386.	2.1	38
17	Expression of TRPV1 Channels after Nerve Injury Provides an Essential Delivery Tool for Neuropathic Pain Attenuation. PLoS ONE, 2012, 7, e44023.	2.5	36
18	Involvement of ERK Phosphorylation of Trigeminal Spinal Subnucleus Caudalis Neurons in Thermal Hypersensitivity in Rats with Infraorbital Nerve Injury. PLoS ONE, 2013, 8, e57278.	2.5	35

Коісні Іwата

#	Article	IF	CITATIONS
19	Central neuronal changes after nerve injury: neuroplastic influences of injury and aging. Journal of Orofacial Pain, 2004, 18, 293-8.	1.7	28
20	Microglia–Astrocyte Communication via C1q Contributes to Orofacial Neuropathic Pain Associated with Infraorbital Nerve Injury. International Journal of Molecular Sciences, 2020, 21, 6834.	4.1	25
21	Increase in IGF-1 Expression in the Injured Infraorbital Nerve and Possible Implications for Orofacial Neuropathic Pain. International Journal of Molecular Sciences, 2019, 20, 6360.	4.1	20
22	The dietary constituent resveratrol suppresses nociceptive neurotransmission via the NMDA receptor. Molecular Pain, 2017, 13, 174480691769701.	2.1	19
23	Primary Somatosensory Cortical Neuronal Activity During Monkey's Detection of Perceived Change in Tooth-Pulp Stimulus Intensity. Journal of Neurophysiology, 1998, 79, 1717-1725.	1.8	18
24	Pathophysiological mechanisms of persistent orofacial pain. Journal of Oral Science, 2020, 62, 131-135.	1.7	17
25	Involvement of transient receptor potential vanilloid 1 in ectopic pain following inferior alveolar nerve transection in rats. Neuroscience Letters, 2012, 513, 95-99.	2.1	14
26	ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue. Molecular Pain, 2016, 12, 174480691664168.	2.1	13
27	CXCR4 signaling contributes to alveolar bone resorption in <i>Porphyromonas</i> <i>gingivalis</i> -induced periodontitis in mice. Journal of Oral Science, 2017, 59, 571-577.	1.7	13
28	Oxytocin-Dependent Regulation of TRPs Expression in Trigeminal Ganglion Neurons Attenuates Orofacial Neuropathic Pain following Infraorbital Nerve Injury in Rats. International Journal of Molecular Sciences, 2020, 21, 9173.	4.1	13
29	Role of macrophage-mediated Toll-like receptor 4–interleukin-1R signaling in ectopic tongue pain associated with tooth pulp inflammation. Journal of Neuroinflammation, 2020, 17, 312.	7.2	11
30	Endothelin Signaling Contributes to Modulation of Nociception in Early-stage Tongue Cancer in Rats. Anesthesiology, 2018, 128, 1207-1219.	2.5	9
31	Role of neuron and non-neuronal cell communication in persistent orofacial pain. Journal of Dental Anesthesia and Pain Medicine, 2019, 19, 77.	1.0	9
32	Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injuryâ€induced mechanical allodynia. Oral Diseases, 2023, 29, 1770-1781.	3.0	9
33	Involvement of TRPV4 ionotropic channel in tongue mechanical hypersensitivity in dry-tongue rats. Journal of Oral Science, 2020, 62, 13-17.	1.7	7
34	Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. International Journal of Molecular Sciences, 2020, 21, 7871.	4.1	6
35	Periodontal acidification contributes to tooth pain hypersensitivity during orthodontic tooth movement. Neuroscience Research, 2022, 177, 103-110.	1.9	6
36	Plastic changes in nociceptive pathways contributing to persistent orofacial pain. Journal of Oral Biosciences, 2022, 64, 263-270.	2.2	6

Коісні Іwата

#	Article	IF	CITATIONS
37	Pannexin 1-Mediated ATP Signaling in the Trigeminal Spinal Subnucleus Caudalis Is Involved in Tongue Cancer Pain. International Journal of Molecular Sciences, 2021, 22, 11404.	4.1	5
38	Involvement of TNFα in the enhancement of hypersensitivity in the adulthood-injured face associated with facial injury in infancy. Neuroscience Research, 2020, 161, 18-23.	1.9	4
39	Functional Genomic Analysis in Pain Research Using Hybridization Arrays. , 2004, 99, 239-253.		3
40	Peripheral Glial Cell Line–Derived Neurotrophic Factor Facilitates the Functional Recovery of Mechanical Nociception Following Inferior Alveolar Nerve Transection in Rats. Journal of Oral and Facial Pain and Headache, 2018, 32, 229-237.	1.4	3
41	Topically injected adrenocorticotropic hormone induces mechanical hypersensitivity on a fullâ€ŧhickness cutaneous wound model in rats. Experimental Dermatology, 2019, 28, 1010-1016.	2.9	2
42	Cortical projection of trigeminal proprioceptive inputs (masseteric input, temporo-mandibular joint) Tj ETQq0	0 0 rgBT /Ov	verlock 10 Tf 5
43	Cortico-bulbar and cortico-cortical projection patterns of jaw and oro-facial motor areas of the coronal and orbital gyri in the cat. HRP analysis Japanese Journal of Oral Biology, 1986, 28, 316-328.	0.1	2
44	Motor representation of jaw and orofacial regions in the cat cerebral cortex. Intracortical microstimulation study Japanese Journal of Oral Biology, 1986, 28, 674-687.	0.1	2
45	Differential responses of rostral subnucleus caudalis and upper cervical dorsal horn neurons to mechanical and chemical stimulation of the parotid gland in rats. Brain Research, 2006, 1106, 123-133.	2.2	1
46	Cortical projection area (layer) of tooth pulp input. Laminal analysis Japanese Journal of Oral Biology, 1985, 27, 482-494.	0.1	1
47	Change in central pain pathways during advancing age . Pain Research, 2006, 21, 151-154.	0.1	Ο
48	Expression of pERK-LI cells in the trigeminal spinal nucleus caudalis following propofol administration in rats . Pain Research, 2007, 22, 19-25.	0.1	0
49	Response properties of TMJ driven neurons in area 3a and 3b of the SI region of the cat cerebral cortex Japanese Journal of Oral Biology, 1988, 30, 409-422.	0.1	Ο
50	Effect of passive jaw depression on TMJD. neurons in cat SI cortex Japanese Journal of Oral Biology, 1991, 33, 245-260.	0.1	0
51	Morphology of Tooth Pulp-driven Neurons in Areas 3a and 3b. Pain Research, 1992, 7, 59-69.	0.1	Ο
52	Morphology and Response Properties of Nociceptive Neurons in the Primary Somatosensory Cortex in Cats. Pain Research, 1994, 9, 69-75.	0.1	0
53	Response Properties of Primary Somatosensory Cortical Neurons during the Detection of Changes in Tooth Pulp Stimulus Intensity in Monkeys. Pain Research, 1996, 11, 125-131.	0.1	0
54	Responses of ACCx Nociceptive Neurons in Awake Behaving Monkeys. Pain Research, 1998, 13, 15-19.	0.1	0