Antoine Marçais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115339/publications.pdf Version: 2024-02-01

ΔΝΤΟΙΝΕ ΜΑΦΑδλίς

#	Article	IF	CITATIONS
1	Combinatorial Expression of NK Cell Receptors Governs Cell Subset Reactivity and Effector Functions but Not Tumor Specificity. Journal of Immunology, 2022, 208, 1802-1812.	0.8	1
2	Zeb1 represses TCR signaling, promotes the proliferation of T cell progenitors and is essential for NK1.1+ T cell development. Cellular and Molecular Immunology, 2021, 18, 2140-2152.	10.5	12
3	Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. ELife, 2021, 10, .	6.0	22
4	Cutting Edge: mTORC1 Inhibition in Metastatic Breast Cancer Patients Negatively Affects Peripheral NK Cell Maturation and Number. Journal of Immunology, 2021, 206, 2265-2270.	0.8	7
5	Chronic T cell receptor stimulation unmasks NK receptor signaling in peripheral T cell lymphomas via epigenetic reprogramming. Journal of Clinical Investigation, 2021, 131, .	8.2	4
6	Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nature Communications, 2021, 12, 5446.	12.8	38
7	Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nature Communications, 2019, 10, 5350.	12.8	100
8	An immunosuppressive pathway for tumor progression. Nature Medicine, 2018, 24, 260-261.	30.7	11
9	Tâ€bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. European Journal of Immunology, 2018, 48, 738-750.	2.9	152
10	S1PR5 is essential for human natural killer cell migration toward sphingosine-1 phosphate. Journal of Allergy and Clinical Immunology, 2018, 141, 2265-2268.e1.	2.9	39
11	Human Naive and Memory T Cells Display Opposite Migratory Responses to Sphingosine-1 Phosphate. Journal of Immunology, 2018, 200, 551-557.	0.8	23
12	Missing-Self Triggers NK-Mediated Microvascular Injuries and Chronic Rejection of Allogenic Kidney Transplants. Transplantation, 2018, 102, S48.	1.0	0
13	A point mutation in the <i>Ncr1</i> signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	4.6	9
14	One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy. Frontiers in Immunology, 2018, 9, 704.	4.8	15
15	Alteration of Natural Killer cell phenotype and function in obese individuals. Clinical Immunology, 2017, 177, 12-17.	3.2	93
16	Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells. Cancers, 2017, 9, 132.	3.7	24
17	High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors. ELife, 2017, 6, .	6.0	65
18	Abstract B55: The alarmin IL-33 is expressed in breast cancer: An emerging role in breast cancer immunity via the activation of NK cells? 2017		0

Antoine Marçais

#	Article	IF	CITATIONS
19	NKp46â€mediated <i>Dicer1</i> inactivation results in defective NKâ€cell differentiation and effector functions in mice. European Journal of Immunology, 2016, 46, 1902-1911.	2.9	6
20	MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 635-642.	4.8	24
21	Back to the drawing board: Understanding the complexity of hepatic innate lymphoid cells. European Journal of Immunology, 2016, 46, 2095-2098.	2.9	11
22	TGF-Î ² inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19.	3.6	453
23	microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes. PLoS Genetics, 2015, 11, e1005020.	3.5	22
24	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Experimental Medicine, 2015, 212, 2015-2025.	8.5	151
25	microRNAs calibrate T cell responses by regulating mTOR. Oncotarget, 2015, 6, 34059-34060.	1.8	4
26	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Experimental Medicine, 2014, 211, 2281-2295.	8.5	57
27	mTOR: A gate to NK cell maturation and activation. Cell Cycle, 2014, 13, 3315-3316.	2.6	17
28	MixMir: microRNA motif discovery from gene expression data using mixed linear models. Nucleic Acids Research, 2014, 42, e135-e135.	14.5	16
29	The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nature Immunology, 2014, 15, 749-757.	14.5	484
30	Regulation of Mouse NK Cell Development and Function by Cytokines. Frontiers in Immunology, 2013, 4, 450.	4.8	155
31	Monitoring NK cell activity in patients with hematological malignancies. Oncolmmunology, 2013, 2, e26011.	4.6	40
32	Negative Regulation of NKG2D Expression by IL-4 in Memory CD8 T Cells. Journal of Immunology, 2012, 189, 3480-3489.	0.8	27
33	Characterization of a CD44/CD122int Memory CD8 T Cell Subset Generated under Sterile Inflammatory Conditions. Journal of Immunology, 2009, 182, 3846-3854.	0.8	29
34	Dicer-Dependent MicroRNA Pathway Controls Invariant NKT Cell Development. Journal of Immunology, 2009, 183, 2506-2512.	0.8	82
35	TLR2 engagement on CD8 T cells lowers the thresholdfor optimal antigen-induced T cell activation. European Journal of Immunology, 2006, 36, 1684-1693.	2.9	172
36	Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability. European Journal of Immunology, 2006, 36, 2745-2754.	2.9	21

ANTOINE MARçAIS

#	Article	IF	CITATIONS
37	Cell-Autonomous CCL5 Transcription by Memory CD8 T Cells Is Regulated by IL-4. Journal of Immunology, 2006, 177, 4451-4457.	0.8	20
38	Flt3 Ligand-Generated Murine Plasmacytoid and Conventional Dendritic Cells Differ in Their Capacity to Prime Naive CD8 T Cells and to Generate Memory Cells In Vivo. Journal of Immunology, 2005, 175, 189-195.	0.8	37
39	Control of proliferation by Bcl-2 family members. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1644, 159-168.	4.1	68
40	Cutting Edge: Immediate RANTES Secretion by Resting Memory CD8 T Cells Following Antigenic Stimulation. Journal of Immunology, 2003, 170, 1615-1619.	0.8	48