
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115146/publications.pdf Version: 2024-02-01

Μ/ει ΥλΝιά

#	Article	IF	CITATIONS
1	Autophosphorylation transforms DNA-PK from protecting to processing DNA ends. Molecular Cell, 2022, 82, 177-189.e4.	9.7	44
2	Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
3	Structure of human <scp>BCCIP</scp> and implications for binding and modification of partner proteins. Protein Science, 2021, 30, 693-699.	7.6	3
4	Structure of an activated DNA-PK and its implications for NHEJ. Molecular Cell, 2021, 81, 801-810.e3.	9.7	77
5	Multiple deprotonation paths of the nucleophile 3′-OH in the DNA synthesis reaction. Proceedings of the United States of America, 2021, 118, e2103990118.	7.1	11
6	Novel <i>Escherichia coli</i> active site <i>dnaE</i> alleles with altered base and sugar selectivity. Molecular Microbiology, 2021, 116, 909-925.	2.5	3
7	SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell and Bioscience, 2021, 11, 136.	4.8	140
8	Inner workings of RAG recombinase and its specialization for adaptive immunity. Current Opinion in Structural Biology, 2021, 71, 79-86.	5.7	9
9	Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair. Cell Research, 2021, 31, 542-553.	12.0	26
10	Molecular-level understanding of the hTAS2R1 receptor-bitter tasting tetra-peptide binding: a structural biology study based on computational approaches. New Journal of Chemistry, 2021, 45, 21369-21381.	2.8	1
11	Different mechanisms for translocation by monomeric and hexameric helicases. Current Opinion in Structural Biology, 2020, 61, 25-32.	5.7	37
12	A fast and high-quality charge model for the next generation general AMBER force field. Journal of Chemical Physics, 2020, 153, 114502.	3.0	195
13	How a B family DNA polymerase has been evolved to copy RNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21274-21280.	7.1	10
14	Cutting antiparallel DNA strands in a single active site. Nature Structural and Molecular Biology, 2020, 27, 119-126.	8.2	25
15	How mouse RAG recombinase avoids DNA transposition. Nature Structural and Molecular Biology, 2020, 27, 127-133.	8.2	16
16	Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair, 2019, 81, 102658.	2.8	18
17	Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions. Journal of Medicinal Chemistry, 2019, 62, 7185-7209.	6.4	17
18	Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase. Molecular Cell, 2019, 76, 44-56.e3.	9.7	29

#	Article	IF	CITATIONS
19	Structures and operating principles of the replisome. Science, 2019, 363, .	12.6	119
20	Discovery of High Affinity Receptors for Dityrosine through Inverse Virtual Screening and Docking and Molecular Dynamics. International Journal of Molecular Sciences, 2019, 20, 115.	4.1	24
21	Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism. Annual Review of Biochemistry, 2018, 87, 239-261.	11.1	169
22	Cracking the DNA Code for V(D)J Recombination. Molecular Cell, 2018, 70, 358-370.e4.	9.7	61
23	Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 507-512.	7.1	39
24	Generation of AMBER force field parameters for zinc centres of M1 and M17 family aminopeptidases. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2595-2604.	3.5	13
25	Bypassing a 8,5′-cyclo-2′-deoxyadenosine lesion by human DNA polymerase Ε at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10660-10665.	7.1	14
26	Mapping the Pathway and Dynamics of Bestatin Inhibition of the <i>Plasmodium falciparum</i> M1 Aminopeptidase <i>Pf</i> Aâ€M1. ChemMedChem, 2018, 13, 2504-2513.	3.2	9
27	Cation trafficking propels RNA hydrolysis. Nature Structural and Molecular Biology, 2018, 25, 715-721.	8.2	39
28	Template and primer requirements for DNA Pol Î,-mediated end joining. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7747-7752.	7.1	28
29	Mouse DNA polymerase \hat{l}^1 lacking the forty-two amino acids encoded by exon-2 is catalytically inactive in vitro. DNA Repair, 2017, 50, 71-76.	2.8	4
30	M1 aminopeptidases as drug targets: broad applications or therapeutic niche?. FEBS Journal, 2017, 284, 1473-1488.	4.7	53
31	Probing the structural requirements for thyroid hormone receptor inhibitory activity of sulfonyInitrophenyIthiazoles (SNPTs) using 2D-QSAR and 3D-QSAR approaches. Medicinal Chemistry Research, 2017, 26, 344-360.	2.4	2
32	How DNA polymerases catalyse replication and repair with contrasting fidelity. Nature Reviews Chemistry, 2017, 1, .	30.2	54
33	Detection of Reaction Intermediates in Mg 2+ -Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods in Enzymology, 2017, 592, 283-327.	1.0	16
34	A new paradigm of DNA synthesis: three-metal-ion catalysis. Cell and Bioscience, 2016, 6, 51.	4.8	54
35	Capture of a third Mg ²⁺ is essential for catalyzing DNA synthesis. Science, 2016, 352, 1334-1337.	12.6	142
36	In silico study on β-aminoketone derivatives as thyroid hormone receptor inhibitors: a combined 3D-QSAR and molecular docking study. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1-13.	3.5	4

#	Article	IF	CITATIONS
37	Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2251-2267.	3.5	8
38	Rapid generation of novel models of RAG1 deficiency by CRISPR/Cas9-induced mutagenesis in murine zygotes. Oncotarget, 2016, 7, 12962-12974.	1.8	11
39	Posttranslational Regulation of Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2015, 290, 27332-27344.	3.4	13
40	Mutsβ generates both expansions and contractions in a mouse model of the Fragile X-associated disorders. Human Molecular Genetics, 2015, 24, ddv408.	2.9	52
41	A DNA-hairpin model for repeat-addition processivity in telomere synthesis. Nature Structural and Molecular Biology, 2015, 22, 844-847.	8.2	27
42	Crystal structure of the V(D)J recombinase RAG1–RAG2. Nature, 2015, 518, 507-511.	27.8	145
43	Structural analysis of selective agonists of thyroid hormone receptor β using 3D-QSAR and molecular docking. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49, 1-18.	5.3	15
44	How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Nature Structural and Molecular Biology, 2015, 22, 298-303.	8.2	41
45	Molecular determinants of thyroid hormone receptor selectivity in a series of phosphonic acid derivatives: 3D-QSAR analysis and molecular docking. Chemico-Biological Interactions, 2015, 240, 324-335.	4.0	9
46	Assembly Pathway and Characterization of the RAG1/2-DNA Paired and Signal-end Complexes. Journal of Biological Chemistry, 2015, 290, 14618-14625.	3.4	15
47	Tripartite DNA Lesion Recognition and Verification by XPC, TFIIH, and XPA in Nucleotide Excision Repair. Molecular Cell, 2015, 59, 1025-1034.	9.7	131
48	3D-QSAR, molecular docking and molecular dynamics studies of a series of RORÎ ³ t inhibitors. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1929-1940.	3.5	20
49	Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2954-2959.	7.1	154
50	Correlation of Phenotype/Genotype in a Cohort of 23 Xeroderma Pigmentosum-Variant Patients Reveals 12 New Disease-Causing <i>POLH</i> Mutations. Human Mutation, 2014, 35, 117-128.	2.5	41
51	The Steric Gate of DNA Polymerase Î ¹ Regulates Ribonucleotide Incorporation and Deoxyribonucleotide Fidelity. Journal of Biological Chemistry, 2014, 289, 9136-9145.	3.4	34
52	Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[<i>a</i>]pyrene dG adduct. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1789-1794.	7.1	33
53	Structure and Dynamics of Apical Membrane Antigen 1 from <i>Plasmodium falciparum</i> FVO. Biochemistry, 2014, 53, 7310-7320.	2.5	23
54	The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Research, 2014, 24, 560-575.	12.0	24

#	Article	IF	CITATIONS
55	Calcium Inhibition of Ribonuclease H1 Two-Metal Ion Catalysis. Journal of the American Chemical Society, 2014, 136, 3137-3144.	13.7	52
56	Structural and mechanistic studies of polymerase l̂∙ bypass of phenanthriplatin DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9133-9138.	7.1	55
57	Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nature Structural and Molecular Biology, 2014, 21, 696-703.	8.2	94
58	An Overview of Y-Family DNA Polymerases and a Case Study of Human DNA Polymerase Ε. Biochemistry, 2014, 53, 2793-2803.	2.5	153
59	Novel insights from structural analysis of lentiviral and gammaretroviral reverse transcriptases in complex with RNA/DNA hybrids. Retrovirology, 2013, 10, .	2.0	0
60	Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nature Structural and Molecular Biology, 2013, 20, 230-236.	8.2	78
61	The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSα. Cell, 2013, 153, 590-600.	28.9	504
62	Mechanism of somatic hypermutation at the WA motif by human DNA polymerase Î. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8146-8151.	7.1	75
63	MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2441-50.	7.1	40
64	Examining the Role of the HIV-1 Reverse Transcriptase p51 Subunit in Positioning and Hydrolysis of RNA/DNA Hybrids. Journal of Biological Chemistry, 2013, 288, 16177-16184.	3.4	16
65	Reply to "Structural requirements for RNA degradation by HIV-1 reverse transcriptase― Nature Structural and Molecular Biology, 2013, 20, 1342-1343.	8.2	4
66	Mechanism of the nucleotidyl-transfer reaction in DNA polymerase revealed by time-resolved protein crystallography. Biophysics (Nagoya-shi, Japan), 2013, 9, 31-36.	0.4	5
67	Watching DNA Polymerase η Make a Phosphodiester Bond. Seibutsu Butsuri, 2013, 53, 254-257.	0.1	1
68	Visualization of Nucleotidyl Transfer Reaction by Human DNA Polymerase η Using Time Resolved Protein Crystallography. Nihon Kessho Gakkaishi, 2013, 55, 42-46.	0.0	0
69	Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity. Nucleic Acids Research, 2012, 40, 6144-6157.	14.5	36
70	Structural basis of human DNA polymerase Î-mediated chemoresistance to cisplatin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7269-7274.	7.1	142
71	Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Science, 2012, 21, 1849-1857.	7.6	32
72	Escherichia coli UmuC active site mutants: Effects on translesion DNA synthesis, mutagenesis and cell survival. DNA Repair, 2012, 11, 726-732.	2.8	22

#	Article	IF	CITATIONS
73	Mechanism of mismatch recognition revealed by human MutSÎ ² bound to unpaired DNA loops. Nature Structural and Molecular Biology, 2012, 19, 72-78.	8.2	136
74	Watching DNA polymerase $\hat{\mathbf{l}}$ make a phosphodiester bond. Nature, 2012, 487, 196-201.	27.8	231
75	Investigation on the binding mode of benzothiophene analogues as potent factor IXa (FIXa) inhibitors in thrombosis by CoMFA, docking and molecular dynamic studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 792-804.	5.2	9
76	Nucleases: diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 2011, 44, 1-93.	5.7	489
77	Catalytic Mechanism of RNA Backbone Cleavage by Ribonuclease H from Quantum Mechanics/Molecular Mechanics Simulations. Journal of the American Chemical Society, 2011, 133, 8934-8941.	13.7	164
78	Dynamic communication between androgen and coactivator: Mutually induced conformational perturbations in androgen receptor ligandâ€binding domain. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1154-1171.	2.6	22
79	Surviving the Sun: Repair and bypass of DNA UV lesions. Protein Science, 2011, 20, 1781-1789.	7.6	49
80	Structure and mechanism of human DNA polymerase $\hat{\mathfrak{l}}\cdot$ Nature, 2010, 465, 1044-1048.	27.8	300
81	Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22487-22492.	7.1	52
82	Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis. PLoS Computational Biology, 2010, 6, e1000866.	3.2	76
83	DNA Scissors Device Used to Measure MutS Binding to DNA Mis-pairs. Journal of the American Chemical Society, 2010, 132, 4352-4357.	13.7	53
84	Topoisomerases and site-specific recombinases: similarities in structure and mechanism. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 520-534.	5.2	37
85	Lessons Learned from UvrD Helicase: Mechanism for Directional Movement. Annual Review of Biophysics, 2010, 39, 367-385.	10.0	48
86	Discovery of estrogen receptor modulators: a review of virtual screening and SAR efforts. Expert Opinion on Drug Discovery, 2010, 5, 21-31.	5.0	15
87	Identification of a residue critical for the excision of 3'-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family. Nucleic Acids Research, 2009, 37, 1829-1842.	14.5	27
88	Structural and functional modules in RNA interference. Current Opinion in Structural Biology, 2009, 19, 286-293.	5.7	50
89	Structural Insight into Translesion Synthesis by DNA Pol II. Cell, 2009, 139, 1279-1289.	28.9	94
90	Initial Stages of V(D)J Recombination: The Organization of RAG1/2 and RSS DNA in the Postcleavage Complex. Molecular Cell, 2009, 35, 217-227.	9.7	44

#	Article	IF	CITATIONS
91	Structure and mechanism for DNA lesion recognition. Cell Research, 2008, 18, 184-197.	12.0	121
92	Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO Journal, 2008, 27, 1172-1181.	7.8	91
93	An equivalent metal ion in one- and two-metal-ion catalysis. Nature Structural and Molecular Biology, 2008, 15, 1228-1231.	8.2	99
94	Protein–nucleic acid complexes: large, small, old, and new. Current Opinion in Structural Biology, 2008, 18, 67-69.	5.7	3
95	Here Comes the Sun: Recognition of UV-Damaged DNA. Cell, 2008, 135, 1172-1174.	28.9	13
96	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. FASEB Journal, 2008, 22, 600.2.	0.5	2
97	The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18993-18998.	7.1	186
98	What a difference a decade makes: Insights into translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15591-15598.	7.1	338
99	Mechanism of Template-independent Nucleotide Incorporation Catalyzed by a Template-dependent DNA Polymerase. Journal of Molecular Biology, 2007, 365, 590-602.	4.2	48
100	Structure of Human RNase H1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcription. Molecular Cell, 2007, 28, 264-276.	9.7	282
101	Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature, 2007, 449, 616-620.	27.8	112
102	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature, 2007, 450, 1106-1110.	27.8	429
103	Human MutLα: The jack of all trades in MMR is also an endonuclease. DNA Repair, 2007, 6, 135-139.	2.8	23
104	UvrD Helicase Unwinds DNA One Base Pair at a Time by a Two-Part Power Stroke. Cell, 2006, 127, 1349-1360.	28.9	342
105	Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair, 2006, 5, 654-666.	2.8	95
106	Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity. Molecular Cell, 2006, 22, 5-13.	9.7	495
107	Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO Journal, 2006, 25, 1924-1933.	7.8	225
108	Crystal structure of a SeqA–N filament: implications for DNA replication and chromosome organization. EMBO Journal, 2005, 24, 1502-1511.	7.8	48

#	Article	IF	CITATIONS
109	Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO Journal, 2005, 24, 2957-2967.	7.8	170
110	Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature, 2005, 434, 612-618.	27.8	316
111	MutH Complexed with Hemi- and Unmethylated DNAs: Coupling Base Recognition and DNA Cleavage. Molecular Cell, 2005, 20, 155-166.	9.7	76
112	Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis. Cell, 2005, 121, 1005-1016.	28.9	552
113	Portraits of a Y-family DNA polymerase. FEBS Letters, 2005, 579, 868-872.	2.8	72
114	Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2265-2269.	7.1	176
115	Proliferating Cell Nuclear Antigen-dependent Coordination of the Biological Functions of Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2004, 279, 48360-48368.	3.4	83
116	Investigating the Role of the Little Finger Domain of Y-family DNA Polymerases in Low Fidelity Synthesis and Translesion Replication. Journal of Biological Chemistry, 2004, 279, 32932-32940.	3.4	122
117	The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nature Genetics, 2004, 36, 694-699.	21.4	92
118	Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO Journal, 2004, 23, 4134-4145.	7.8	163
119	Snapshots of Replication through an Abasic Lesion. Molecular Cell, 2004, 13, 751-762.	9.7	186
120	Damage repair DNA polymerases Y. Current Opinion in Structural Biology, 2003, 13, 23-30.	5.7	138
121	Pruning DNA. Structure, 2003, 11, 365-366.	3.3	6
122	Replication of a cis–syn thymine dimer at atomic resolution. Nature, 2003, 424, 1083-1087.	27.8	212
123	Tetramerization and DNA Ligase IV Interaction of the DNA Double-strand Break Repair Protein XRCC4 are Mutually Exclusive. Journal of Molecular Biology, 2003, 334, 215-228.	4.2	67
124	Monovalent cation dependence and preference of GHKL ATPases and kinases 1. FEBS Letters, 2003, 544, 268-273.	2.8	38
125	In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair, 2003, 2, 387-405.	2.8	109
126	Crystal Structure and Biochemical Analysis of the MutS·ADP·Beryllium Fluoride Complex Suggests a Conserved Mechanism for ATP Interactions in Mismatch Repair. Journal of Biological Chemistry, 2003, 278, 16088-16094.	3.4	47

#	Article	IF	CITATIONS
127	Yeast POL5 Is an Evolutionarily Conserved Regulator of rDNA Transcription Unrelated to Any Known DNA Polymerases. Cell Cycle, 2003, 2, 120-122.	2.6	15
128	Histidine Kinases. , 2003, , 219-236.		1
129	Insights into negative modulation of E. coli replication initiation from the structure of SeqA–hemimethylated DNA complex. Nature Structural Biology, 2002, 9, 839-43.	9.7	29
130	Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass. DNA Repair, 2002, 1, 343-358.	2.8	71
131	Evidence for sequential action of two ATPase active sites in yeast Msh2–Msh6. DNA Repair, 2002, 1, 743-753.	2.8	80
132	Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. Journal of Molecular Biology, 2001, 305, 805-816.	4.2	43
133	Composite Active Site of an ABC ATPase. Molecular Cell, 2001, 7, 1-12.	9.7	242
134	Crystal Structure of a Y-Family DNA Polymerase in Action. Cell, 2001, 107, 91-102.	28.9	588
135	A Ku Bridge over Broken DNA. Structure, 2001, 9, 881-884.	3.3	40
136	Asymmetric Recognition of DNA Local Distortion. Journal of Biological Chemistry, 2001, 276, 46225-46229.	3.4	67
137	Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature, 2000, 407, 703-710.	27.8	605
138	Structure and function of mismatch repair proteins. Mutation Research DNA Repair, 2000, 460, 245-256.	3.7	98
139	Oligomerization of a MutS Mismatch Repair Protein from Thermus aquaticus. Journal of Biological Chemistry, 1999, 274, 23673-23678.	3.4	51
140	Transformation of MutL by ATP Binding and Hydrolysis. Cell, 1999, 97, 85-97.	28.9	374
141	Crystal Structure and ATPase Activity of MutL. Cell, 1998, 95, 541-552.	28.9	352
142	Site-specific recombination in plane view. Structure, 1997, 5, 1401-1406.	3.3	42
143	Recombining the structures of HIV integrase, RuvC and RNase H. Structure, 1995, 3, 131-134.	3.3	243
144	Crystal structure of the site-specific recombinase γδ resolvase complexed with a 34 by cleavage site. Cell, 1995, 82, 193-207.	28.9	259

0

#	Article	IF	CITATIONS
145	Crystallization and characterization of human chorionic gonadotropin in chemically deglycosylated and enzymically desialylated states. Biochemistry, 1989, 28, 9239-9243.	2.5	64

146 Two-Metal-Ion-Dependent Catalysis in Nucleic Acid Enzymes. , 0, , 415-436.