
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature, 2000, 407, 703-710.	27.8	605
2	Crystal Structure of a Y-Family DNA Polymerase in Action. Cell, 2001, 107, 91-102.	28.9	588
3	Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis. Cell, 2005, 121, 1005-1016.	28.9	552
4	The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSα. Cell, 2013, 153, 590-600.	28.9	504
5	Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity. Molecular Cell, 2006, 22, 5-13.	9.7	495
6	Nucleases: diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 2011, 44, 1-93.	5.7	489
7	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature, 2007, 450, 1106-1110.	27.8	429
8	Transformation of MutL by ATP Binding and Hydrolysis. Cell, 1999, 97, 85-97.	28.9	374
9	Crystal Structure and ATPase Activity of MutL. Cell, 1998, 95, 541-552.	28.9	352
10	UvrD Helicase Unwinds DNA One Base Pair at a Time by a Two-Part Power Stroke. Cell, 2006, 127, 1349-1360.	28.9	342
11	What a difference a decade makes: Insights into translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15591-15598.	7.1	338
12	Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature, 2005, 434, 612-618.	27.8	316
13	Structure and mechanism of human DNA polymerase Î. Nature, 2010, 465, 1044-1048.	27.8	300
14	Structure of Human RNase H1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcription. Molecular Cell, 2007, 28, 264-276.	9.7	282
15	Crystal structure of the site-specific recombinase Î ³ δ resolvase complexed with a 34 by cleavage site. Cell, 1995, 82, 193-207.	28.9	259
16	Recombining the structures of HIV integrase, RuvC and RNase H. Structure, 1995, 3, 131-134.	3.3	243
17	Composite Active Site of an ABC ATPase. Molecular Cell, 2001, 7, 1-12.	9.7	242
18	Watching DNA polymerase i· make a phosphodiester bond. Nature, 2012, 487, 196-201.	27.8	231

#	Article	IF	CITATIONS
19	Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO Journal, 2006, 25, 1924-1933.	7.8	225
20	Replication of a cis–syn thymine dimer at atomic resolution. Nature, 2003, 424, 1083-1087.	27.8	212
21	A fast and high-quality charge model for the next generation general AMBER force field. Journal of Chemical Physics, 2020, 153, 114502.	3.0	195
22	Snapshots of Replication through an Abasic Lesion. Molecular Cell, 2004, 13, 751-762.	9.7	186
23	The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18993-18998.	7.1	186
24	Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2265-2269.	7.1	176
25	Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO Journal, 2005, 24, 2957-2967.	7.8	170
26	Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism. Annual Review of Biochemistry, 2018, 87, 239-261.	11.1	169
27	Catalytic Mechanism of RNA Backbone Cleavage by Ribonuclease H from Quantum Mechanics/Molecular Mechanics Simulations. Journal of the American Chemical Society, 2011, 133, 8934-8941.	13.7	164
28	Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO Journal, 2004, 23, 4134-4145.	7.8	163
29	Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2954-2959.	7.1	154
30	An Overview of Y-Family DNA Polymerases and a Case Study of Human DNA Polymerase Ε. Biochemistry, 2014, 53, 2793-2803.	2.5	153
31	Crystal structure of the V(D)J recombinase RAG1–RAG2. Nature, 2015, 518, 507-511.	27.8	145
32	Structural basis of human DNA polymerase îmediated chemoresistance to cisplatin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7269-7274.	7.1	142
33	Capture of a third Mg ²⁺ is essential for catalyzing DNA synthesis. Science, 2016, 352, 1334-1337.	12.6	142
34	SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell and Bioscience, 2021, 11, 136.	4.8	140
35	Damage repair DNA polymerases Y. Current Opinion in Structural Biology, 2003, 13, 23-30.	5.7	138
36	Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nature Structural and Molecular Biology, 2012, 19, 72-78.	8.2	136

#	Article	IF	CITATIONS
37	Tripartite DNA Lesion Recognition and Verification by XPC, TFIIH, and XPA in Nucleotide Excision Repair. Molecular Cell, 2015, 59, 1025-1034.	9.7	131
38	Investigating the Role of the Little Finger Domain of Y-family DNA Polymerases in Low Fidelity Synthesis and Translesion Replication. Journal of Biological Chemistry, 2004, 279, 32932-32940.	3.4	122
39	Structure and mechanism for DNA lesion recognition. Cell Research, 2008, 18, 184-197.	12.0	121
40	Structures and operating principles of the replisome. Science, 2019, 363, .	12.6	119
41	Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature, 2007, 449, 616-620.	27.8	112
42	In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair, 2003, 2, 387-405.	2.8	109
43	An equivalent metal ion in one- and two-metal-ion catalysis. Nature Structural and Molecular Biology, 2008, 15, 1228-1231.	8.2	99
44	Structure and function of mismatch repair proteins. Mutation Research DNA Repair, 2000, 460, 245-256.	3.7	98
45	Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair, 2006, 5, 654-666.	2.8	95
46	Structural Insight into Translesion Synthesis by DNA Pol II. Cell, 2009, 139, 1279-1289.	28.9	94
47	Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nature Structural and Molecular Biology, 2014, 21, 696-703.	8.2	94
48	The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nature Genetics, 2004, 36, 694-699.	21.4	92
49	Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO Journal, 2008, 27, 1172-1181.	7.8	91
50	Proliferating Cell Nuclear Antigen-dependent Coordination of the Biological Functions of Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2004, 279, 48360-48368.	3.4	83
51	Evidence for sequential action of two ATPase active sites in yeast Msh2–Msh6. DNA Repair, 2002, 1, 743-753.	2.8	80
52	Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nature Structural and Molecular Biology, 2013, 20, 230-236.	8.2	78
53	Structure of an activated DNA-PK and its implications for NHEJ. Molecular Cell, 2021, 81, 801-810.e3.	9.7	77
54	MutH Complexed with Hemi- and Unmethylated DNAs: Coupling Base Recognition and DNA Cleavage. Molecular Cell, 2005, 20, 155-166.	9.7	76

#	Article	IF	CITATIONS
55	Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis. PLoS Computational Biology, 2010, 6, e1000866.	3.2	76
56	Mechanism of somatic hypermutation at the WA motif by human DNA polymerase η. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8146-8151.	7.1	75
57	Portraits of a Y-family DNA polymerase. FEBS Letters, 2005, 579, 868-872.	2.8	72
58	Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass. DNA Repair, 2002, 1, 343-358.	2.8	71
59	Asymmetric Recognition of DNA Local Distortion. Journal of Biological Chemistry, 2001, 276, 46225-46229.	3.4	67
60	Tetramerization and DNA Ligase IV Interaction of the DNA Double-strand Break Repair Protein XRCC4 are Mutually Exclusive. Journal of Molecular Biology, 2003, 334, 215-228.	4.2	67
61	Crystallization and characterization of human chorionic gonadotropin in chemically deglycosylated and enzymically desialylated states. Biochemistry, 1989, 28, 9239-9243.	2.5	64
62	Cracking the DNA Code for V(D)J Recombination. Molecular Cell, 2018, 70, 358-370.e4.	9.7	61
63	Structural and mechanistic studies of polymerase η bypass of phenanthriplatin DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9133-9138.	7.1	55
64	A new paradigm of DNA synthesis: three-metal-ion catalysis. Cell and Bioscience, 2016, 6, 51.	4.8	54
65	How DNA polymerases catalyse replication and repair with contrasting fidelity. Nature Reviews Chemistry, 2017, 1, .	30.2	54
66	DNA Scissors Device Used to Measure MutS Binding to DNA Mis-pairs. Journal of the American Chemical Society, 2010, 132, 4352-4357.	13.7	53
67	M1 aminopeptidases as drug targets: broad applications or therapeutic niche?. FEBS Journal, 2017, 284, 1473-1488.	4.7	53
68	Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22487-22492.	7.1	52
69	Calcium Inhibition of Ribonuclease H1 Two-Metal Ion Catalysis. Journal of the American Chemical Society, 2014, 136, 3137-3144.	13.7	52
70	MutsÎ ² generates both expansions and contractions in a mouse model of the Fragile X-associated disorders. Human Molecular Genetics, 2015, 24, ddv408.	2.9	52
71	Oligomerization of a MutS Mismatch Repair Protein from Thermus aquaticus. Journal of Biological Chemistry, 1999, 274, 23673-23678.	3.4	51
72	Structural and functional modules in RNA interference. Current Opinion in Structural Biology, 2009, 19, 286-293.	5.7	50

#	Article	IF	CITATIONS
73	Surviving the Sun: Repair and bypass of DNA UV lesions. Protein Science, 2011, 20, 1781-1789.	7.6	49
74	Crystal structure of a SeqA–N filament: implications for DNA replication and chromosome organization. EMBO Journal, 2005, 24, 1502-1511.	7.8	48
75	Mechanism of Template-independent Nucleotide Incorporation Catalyzed by a Template-dependent DNA Polymerase. Journal of Molecular Biology, 2007, 365, 590-602.	4.2	48
76	Lessons Learned from UvrD Helicase: Mechanism for Directional Movement. Annual Review of Biophysics, 2010, 39, 367-385.	10.0	48
77	Crystal Structure and Biochemical Analysis of the MutS·ADP·Beryllium Fluoride Complex Suggests a Conserved Mechanism for ATP Interactions in Mismatch Repair. Journal of Biological Chemistry, 2003, 278, 16088-16094.	3.4	47
78	Initial Stages of V(D)J Recombination: The Organization of RAG1/2 and RSS DNA in the Postcleavage Complex. Molecular Cell, 2009, 35, 217-227.	9.7	44
79	Autophosphorylation transforms DNA-PK from protecting to processing DNA ends. Molecular Cell, 2022, 82, 177-189.e4.	9.7	44
80	Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. Journal of Molecular Biology, 2001, 305, 805-816.	4.2	43
81	Site-specific recombination in plane view. Structure, 1997, 5, 1401-1406.	3.3	42
82	Correlation of Phenotype/Genotype in a Cohort of 23 Xeroderma Pigmentosum-Variant Patients Reveals 12 New Disease-Causing <i>POLH</i> Mutations. Human Mutation, 2014, 35, 117-128.	2.5	41
83	How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Nature Structural and Molecular Biology, 2015, 22, 298-303.	8.2	41
84	A Ku Bridge over Broken DNA. Structure, 2001, 9, 881-884.	3.3	40
85	MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2441-50.	7.1	40
86	Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 507-512.	7.1	39
87	Cation trafficking propels RNA hydrolysis. Nature Structural and Molecular Biology, 2018, 25, 715-721.	8.2	39
88	Monovalent cation dependence and preference of GHKL ATPases and kinases 1. FEBS Letters, 2003, 544, 268-273.	2.8	38
89	Topoisomerases and site-specific recombinases: similarities in structure and mechanism. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 520-534.	5.2	37
90	Different mechanisms for translocation by monomeric and hexameric helicases. Current Opinion in Structural Biology, 2020, 61, 25-32.	5.7	37

#	Article	IF	CITATIONS
91	Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity. Nucleic Acids Research, 2012, 40, 6144-6157.	14.5	36
92	The Steric Gate of DNA Polymerase ι Regulates Ribonucleotide Incorporation and Deoxyribonucleotide Fidelity. Journal of Biological Chemistry, 2014, 289, 9136-9145.	3.4	34
93	Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[<i>a</i>]pyrene dG adduct. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1789-1794.	7.1	33
94	Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Science, 2012, 21, 1849-1857.	7.6	32
95	Insights into negative modulation of E. coli replication initiation from the structure of SeqA–hemimethylated DNA complex. Nature Structural Biology, 2002, 9, 839-43.	9.7	29
96	Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase. Molecular Cell, 2019, 76, 44-56.e3.	9.7	29
97	Template and primer requirements for DNA Pol Î,-mediated end joining. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7747-7752.	7.1	28
98	Identification of a residue critical for the excision of 3'-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family. Nucleic Acids Research, 2009, 37, 1829-1842.	14.5	27
99	A DNA-hairpin model for repeat-addition processivity in telomere synthesis. Nature Structural and Molecular Biology, 2015, 22, 844-847.	8.2	27
100	Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair. Cell Research, 2021, 31, 542-553.	12.0	26
101	Cutting antiparallel DNA strands in a single active site. Nature Structural and Molecular Biology, 2020, 27, 119-126.	8.2	25
102	The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Research, 2014, 24, 560-575.	12.0	24
103	Discovery of High Affinity Receptors for Dityrosine through Inverse Virtual Screening and Docking and Molecular Dynamics. International Journal of Molecular Sciences, 2019, 20, 115.	4.1	24
104	Human MutLα: The jack of all trades in MMR is also an endonuclease. DNA Repair, 2007, 6, 135-139.	2.8	23
105	Structure and Dynamics of Apical Membrane Antigen 1 from <i>Plasmodium falciparum</i> FVO. Biochemistry, 2014, 53, 7310-7320.	2.5	23
106	Dynamic communication between androgen and coactivator: Mutually induced conformational perturbations in androgen receptor ligandâ€binding domain. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1154-1171.	2.6	22
107	Escherichia coli UmuC active site mutants: Effects on translesion DNA synthesis, mutagenesis and cell survival. DNA Repair, 2012, 11, 726-732.	2.8	22
108	3D-QSAR, molecular docking and molecular dynamics studies of a series of RORÎ ³ t inhibitors. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1929-1940.	3.5	20

#	Article	IF	CITATIONS
109	Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair, 2019, 81, 102658.	2.8	18
110	Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions. Journal of Medicinal Chemistry, 2019, 62, 7185-7209.	6.4	17
111	Examining the Role of the HIV-1 Reverse Transcriptase p51 Subunit in Positioning and Hydrolysis of RNA/DNA Hybrids. Journal of Biological Chemistry, 2013, 288, 16177-16184.	3.4	16
112	Detection of Reaction Intermediates in Mg 2+ -Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods in Enzymology, 2017, 592, 283-327.	1.0	16
113	How mouse RAG recombinase avoids DNA transposition. Nature Structural and Molecular Biology, 2020, 27, 127-133.	8.2	16
114	Yeast POL5 Is an Evolutionarily Conserved Regulator of rDNA Transcription Unrelated to Any Known DNA Polymerases. Cell Cycle, 2003, 2, 120-122.	2.6	15
115	Discovery of estrogen receptor modulators: a review of virtual screening and SAR efforts. Expert Opinion on Drug Discovery, 2010, 5, 21-31.	5.0	15
116	Structural analysis of selective agonists of thyroid hormone receptor Î ² using 3D-QSAR and molecular docking. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49, 1-18.	5.3	15
117	Assembly Pathway and Characterization of the RAG1/2-DNA Paired and Signal-end Complexes. Journal of Biological Chemistry, 2015, 290, 14618-14625.	3.4	15
118	Bypassing a 8,5′-cyclo-2′-deoxyadenosine lesion by human DNA polymerase Î∙ at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10660-10665.	7.1	14
119	Here Comes the Sun: Recognition of UV-Damaged DNA. Cell, 2008, 135, 1172-1174.	28.9	13
120	Posttranslational Regulation of Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2015, 290, 27332-27344.	3.4	13
121	Generation of AMBER force field parameters for zinc centres of M1 and M17 family aminopeptidases. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2595-2604.	3.5	13
122	Multiple deprotonation paths of the nucleophile 3′-OH in the DNA synthesis reaction. Proceedings of the United States of America, 2021, 118, e2103990118.	7.1	11
123	Rapid generation of novel models of RAG1 deficiency by CRISPR/Cas9-induced mutagenesis in murine zygotes. Oncotarget, 2016, 7, 12962-12974.	1.8	11
124	How a B family DNA polymerase has been evolved to copy RNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21274-21280.	7.1	10
125	Investigation on the binding mode of benzothiophene analogues as potent factor IXa (FIXa) inhibitors in thrombosis by CoMFA, docking and molecular dynamic studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 792-804.	5.2	9
126	Molecular determinants of thyroid hormone receptor selectivity in a series of phosphonic acid derivatives: 3D-QSAR analysis and molecular docking. Chemico-Biological Interactions, 2015, 240, 324-335.	4.0	9

#	Article	IF	CITATIONS
127	Mapping the Pathway and Dynamics of Bestatin Inhibition of the <i>Plasmodium falciparum</i> M1 Aminopeptidase <i>Pf</i> Aâ€M1. ChemMedChem, 2018, 13, 2504-2513.	3.2	9
128	Inner workings of RAG recombinase and its specialization for adaptive immunity. Current Opinion in Structural Biology, 2021, 71, 79-86.	5.7	9
129	Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2251-2267.	3.5	8
130	Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
131	Pruning DNA. Structure, 2003, 11, 365-366.	3.3	6
132	Mechanism of the nucleotidyl-transfer reaction in DNA polymerase revealed by time-resolved protein crystallography. Biophysics (Nagoya-shi, Japan), 2013, 9, 31-36.	0.4	5
133	Reply to "Structural requirements for RNA degradation by HIV-1 reverse transcriptase― Nature Structural and Molecular Biology, 2013, 20, 1342-1343.	8.2	4
134	In silico study on β-aminoketone derivatives as thyroid hormone receptor inhibitors: a combined 3D-QSAR and molecular docking study. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1-13.	3.5	4
135	Mouse DNA polymerase \hat{l}^1 lacking the forty-two amino acids encoded by exon-2 is catalytically inactive in vitro. DNA Repair, 2017, 50, 71-76.	2.8	4
136	Protein–nucleic acid complexes: large, small, old, and new. Current Opinion in Structural Biology, 2008, 18, 67-69.	5.7	3
137	Structure of human <scp>BCCIP</scp> and implications for binding and modification of partner proteins. Protein Science, 2021, 30, 693-699.	7.6	3
138	Novel <i>Escherichia coli</i> active site <i>dnaE</i> alleles with altered base and sugar selectivity. Molecular Microbiology, 2021, 116, 909-925.	2.5	3
139	Probing the structural requirements for thyroid hormone receptor inhibitory activity of sulfonylnitrophenylthiazoles (SNPTs) using 2D-QSAR and 3D-QSAR approaches. Medicinal Chemistry Research, 2017, 26, 344-360.	2.4	2
140	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. FASEB Journal, 2008, 22, 600.2.	0.5	2
141	Watching DNA Polymerase η Make a Phosphodiester Bond. Seibutsu Butsuri, 2013, 53, 254-257.	0.1	1
142	Histidine Kinases. , 2003, , 219-236.		1
143	Molecular-level understanding of the hTAS2R1 receptor-bitter tasting tetra-peptide binding: a structural biology study based on computational approaches. New Journal of Chemistry, 2021, 45, 21369-21381.	2.8	1

9

#	Article	IF	CITATIONS
145	Novel insights from structural analysis of lentiviral and gammaretroviral reverse transcriptases in complex with RNA/DNA hybrids. Retrovirology, 2013, 10, .	2.0	0
146	Visualization of Nucleotidyl Transfer Reaction by Human DNA Polymerase η Using Time Resolved Protein Crystallography. Nihon Kessho Gakkaishi, 2013, 55, 42-46.	0.0	0