
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4115044/publications.pdf Version: 2024-02-01

Διι Μ Διι

#	Article	IF	CITATIONS
1	Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles asÂefficient and reusable catalyst. Tetrahedron, 2014, 70, 2971-2975.	1.9	108
2	CuFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives. Tetrahedron, 2015, 71, 2579-2584.	1.9	102
3	Synthesis and characterization of Fe(III), Pd(II) and Cu(II)-thiazole complexes; DFT, pharmacophore modeling, in-vitro assay and DNA binding studies. Journal of Molecular Liquids, 2021, 326, 115277.	4.9	86
4	A robust synthesis and characterization of superparamagnetic CoFe ₂ O ₄ nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Applied Organometallic Chemistry, 2016, 30, 1022-1029.	3.5	69
5	Synthesis and characterization of highly stable superparamagnetic CoFe2O4 nanoparticles as a catalyst for novel synthesis of thiazolo[4,5-b]quinolin-9-one derivatives in aqueous medium. Journal of Molecular Catalysis A, 2015, 404-405, 148-155.	4.8	61
6	Synthesis and biological activity of dihydroimidazole and 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazins. European Journal of Medicinal Chemistry, 2012, 47, 138-142.	5.5	50
7	Eco-friendly synthesis of guanidinyltetrazole compounds and 5-substituted 1H-tetrazoles in water under microwave irradiation. Tetrahedron, 2014, 70, 270-275.	1.9	44
8	Development of New Thiazole Complexes as Powerful Catalysts for Synthesis of Pyrazole-4-Carbonitrile Derivatives under Ultrasonic Irradiation Condition Supported by DFT Studies. ACS Omega, 2021, 6, 21071-21086.	3.5	41
9	Divinyl Sulfone Cross-Linked Cyclodextrin-Based Polymeric Materials: Synthesis and Applications as Sorbents and Encapsulating Agents. Molecules, 2015, 20, 3565-3581.	3.8	40
10	Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chinese Journal of Catalysis, 2015, 36, 1124-1130.	14.0	38
11	Carbocation Catalyzed Bromination of Alkyl Arenes, a Chemoselective <i>sp</i> ^{<i>3</i>} <i>vs. sp</i> ^{<i>2</i>} Câ^H functionalization Advanced Synthesis and Catalysis, 2018, 360, 4197-4204.	4.3	36
12	Synthesis and structural elucidation for new pyrano thiazole complexes: Biological screening and effects on DNA through in-vitro and in-silico approaches. Journal of Molecular Liquids, 2021, 332, 115844.	4.9	31
13	Carbocation Catalysis: Oxaâ€Diels–Alder Reactions of Unactivated Aldehydes and Simple Dienes. European Journal of Organic Chemistry, 2015, 2015, 6610-6614.	2.4	28
14	New mononuclear Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) complexes incorporating 4â€{[(2) Tj ETQq0 0 0 rgBT /Ove theoretical, antiâ€inflammatory, and molecular docking investigation. Applied Organometallic Chemistry, 2022, 36, .	erlock 10 3.5	Tf 50 232 Td (28
15	Cobalt(III)–porphyrin complex (CoTCPP) as an efficient and recyclable homogeneous catalyst for the synthesis of tryptanthrin in aqueous media. Tetrahedron Letters, 2016, 57, 435-437.	1.4	26
16	Green Method for the Synthetic Ugi Reaction by Twin Screw Extrusion without a Solvent and Catalyst. ACS Omega, 2020, 5, 6194-6198.	3.5	26
17	Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5â€ <i>a</i>]pyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Applied Organometallic Chemistry, 2022, 36, e6320.	3.5	25
18	Green synthesis of TiO 2 nanoparticles as an efficient heterogeneous catalyst with high reusability for synthesis of 1,2â€dihydroquinoline derivatives. Applied Organometallic Chemistry, 2019, 33, e5005.	3.5	24

#	Article	IF	CITATIONS
19	Synthesis and Toxicological Effect of Some New Pyrrole Derivatives as Prospective Insecticidal Agents against the Cotton Leafworm, <i>Spodoptera littoralis</i> (Boisduval). ACS Omega, 2022, 7, 3990-4000.	3.5	24
20	Iron (III)â€porphyrin Complex FeTSPP as an efficient catalyst for synthesis of tetrazole derivatives via [2Â+Â3]cycloaddition reaction in aqueous medium. Applied Organometallic Chemistry, 2019, 33, e4989.	3.5	22
21	Unveiling the exceptional synergism-induced design of Co-Mg-Al layered triple hydroxides (LTHs) for boosting catalytic activity toward the green synthesis of indol-3-yl derivatives under mild conditions. Journal of Colloid and Interface Science, 2021, 599, 227-244.	9.4	22
22	Microwave-Assisted Synthesis, Biological Activity Evaluation, Molecular Docking, and ADMET Studies of Some Novel Pyrrolo [2,3-b] Pyrrole Derivatives. Molecules, 2022, 27, 2061.	3.8	22
23	Synthesis of Pyrimidine, Dihydropyrimidinone, and Dihydroimidazole Derivatives under Free Solvent Conditions and Their Antibacterial Evaluation. Journal of Heterocyclic Chemistry, 2014, 51, 1202-1209.	2.6	21
24	Boosting the catalytic performance of zinc linked amino acid complex as an ecoâ€friendly for synthesis of novel pyrimidines in aqueous medium. Applied Organometallic Chemistry, 2021, 35, e6197.	3.5	21
25	Efficient and recoverable novel pyranothiazol Pd (II), Cu (II) and Fe(III) catalysts in simple synthesis of polyfunctionalized pyrroles: Under mild conditions using ultrasonic irradiation. Applied Organometallic Chemistry, 2021, 35, e6370.	3.5	21
26	Optoelectronic characteristics of as-deposited, annealed and I2 – Treated thin films of newly synthesized organic dye based on pyrrolo[2,3-b]pyrrole. Current Research in Green and Sustainable Chemistry, 2021, 4, 100090.	5.6	18
27	Synthesis of Some Novel Fused Azole Derivatives. Synthetic Communications, 2012, 42, 2748-2762.	2.1	17
28	Rapidly and Highly Yielded Synthesis of Pyrimidine, Dihydropyrimidinone, and Triazino[2,1- <i>b</i>]quinazolin-6-ones Derivatives. Journal of Heterocyclic Chemistry, 2013, 50, 1425-1430.	2.6	17
29	4â€Toluenesulfonamide as a Building Block for Synthesis of Novel Triazepines, Pyrimidines, and Azoles. Journal of Heterocyclic Chemistry, 2016, 53, 1544-1553.	2.6	17
30	Green Bioâ€organic and Recoverable Catalyst Taurine (2â€aminoethanesulfonic acid) for Synthesis of Bioâ€active Compounds 3,4â€Dihydropyrimidin Derivatives in Aqueous Medium ChemistrySelect, 2020, 5, 12098-12102.	1.5	17
31	Synthesis of Novel Chromene, Pyridine, Pyrazole, Pyrimidine, and Imidazole Derivatives <i>via</i> Oneâ€pot Multicomponent Reaction. Journal of Heterocyclic Chemistry, 2017, 54, 3342-3349.	2.6	16
32	4â€Hydroxyâ€1â€phenylquinolinâ€2(1 <i>H</i>)â€one in Oneâ€pot Synthesis of Pyrimidoquinolines and Related Compounds under Microwave Irradiation and Conventional Conditions. Journal of Heterocyclic Chemistry, 2016, 53, 383-388.	2.6	14
33	Boosting the catalytic performance of manganese (III)â€porphyrin complex MnTSPP for facile oneâ€pot green synthesis of 1,4â€dihydropyridine derivatives under mild conditions. Applied Organometallic Chemistry, 2021, 35, e6238.	3.5	14
34	Optical characterization and effects of iodine vapor & amp; gaseous HCl adsorption investigation of novel synthesized organic dye based on thieno[2,3-b]thiophene. Optik, 2021, 243, 167385.	2.9	14
35	Efficient and Recoverable Bio-Organic Catalyst Cysteine for Synthesis, Docking Study, and Antifungal Activity of New Bio-Active 3,4-Dihydropyrimidin-2(1 <i>H</i>)-ones/thiones Under Microwave Irradiation. ACS Omega, 2022, 7, 22839-22849.	3.5	14
36	Synthesis of Some Novel Imidazopyrazole and Pyrazolopyrimidine Derivatives. Journal of Heterocyclic Chemistry, 2014, 51, 1476-1481.	2.6	12

#	Article	IF	CITATIONS
37	Synthesis and <i>in vitro</i> Antibacterial Activity of Some Novel Fused Pyridopyrimidine Derivatives. Journal of Heterocyclic Chemistry, 2016, 53, 1304-1309.	2.6	12
38	Synthesis and Antimicrobial Screening of Fused Heterocyclic Pyridines. Journal of Heterocyclic Chemistry, 2017, 54, 871-878.	2.6	11
39	Synthesis of Novel Modified Guanidines: Reaction of Dicyandiamide with Amino Acids, Amides, and Amines in Aqueous Medium. Journal of Heterocyclic Chemistry, 2014, 51, 1322-1326.	2.6	10
40	Divinyl Sulfone Cross-Linked β-Cyclodextrin Polymer as New and Effective Corrosion Inhibitor for Zn Anode in 3.5ÂM KOH. Transactions of the Indian Institute of Metals, 2016, 69, 1783-1792.	1.5	10
41	Synthesis and Reactions of New Thiazoles and Pyrimidines Containing Sulfonate Moiety. Journal of Heterocyclic Chemistry, 2018, 55, 964-970.	2.6	10
42	Epichlorohydrin cross-linked <i>β</i> -cyclodextrin: anÂenvironmental method for the synthesis of 2-arylbenzothiazoles derivatives in water. Journal of Sulfur Chemistry, 2016, 37, 70-79.	2.0	9
43	Synthesis, spectroscopic, DFT calculations, antimicrobial, cytotoxicity, and DNA binding studies of novel Cu (II), Ni (II), Zn (II), and VO (II) Schiff base complexes based on ibuprofen. Applied Organometallic Chemistry, 2022, 36, .	3.5	7
44	2-(4-Chlorophenyl)-4,5-diphenyl-1-(prop-2-en-1-yl)-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, 0875-0876.	0.2	6
45	Multicomponent Reaction for Synthesis of Novel 2â€Tosyloxyphenylpyridines. Journal of Heterocyclic Chemistry, 2019, 56, 1420-1425.	2.6	6
46	Novel polyesters based on indazole moiety: Synthesis, characterization and applicability as efficient inhibitors for acidic X-65-steel corrosion. Reactive and Functional Polymers, 2021, 166, 105001.	4.1	6
47	9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, 085-086.	0.2	5
48	Utility of pyrroleâ€2â€ŧhioacetohydrazide in synthesis of new heterocyclic compounds with promising antimicrobial activities and molecular docking studies. Journal of Heterocyclic Chemistry, 2022, 59, 449-465.	2.6	5
49	2-(1,3-Benzothiazol-2-yl)guanidine. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o786-o786.	0.2	4
50	2-(1,3-Benzoxazol-2-yl)guanidinium chloride. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3133-o3133.	0.2	3
51	2-(1,3-Benzothiazol-2-yl)guanidinium chloride. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3132-o3132.	0.2	2
52	2-(5-Methoxy-2-methyl-1 <i>H</i> -indol-3-yl)- <i>N</i> ′-[(1 <i>E</i> ,2 <i>E</i>)-3-phenylprop-2-en-1-ylidene]ace Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1493-o1493.	tohydrazio	de. ₂
53	N-(4,6-Dimethylpyrimidin-2-yl)-1H-benzimidazol-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, 0719-0719.	0.2	1

⁵⁴ 2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate. Acta Crystallographica Section E: Structure Reports 0.2 1 Online, 2011, 67, o2920-o2920.

#	Article	IF	CITATIONS
55	2-Amino-4-phenyl-4H,10H-1,3,5-triazino[1,2-a]benzimidazol-3-ium chloride. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1154-o1154.	0.2	1
56	2-Ethoxy-4-(4-methylphenyl)-6-phenylpyridine-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2495-o2496.	0.2	1
57	N′-[(E)-Benzylidene]-2-(6-methoxynaphthalen-2-yl)propanohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1614-o1614.	0.2	1
58	Ethyl 4-(4-chloroanilino)-1-(4-chlorophenyl)-2-methyl-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1761-o1762.	0.2	1
59	Ethyl 4-anilino-2-methyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-2-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1757-o1758.	0.2	1
60	4-(4-Chlorobenzyl)-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1153-o1153.	0.2	0
61	N-(4,6-Dimethylpyrimidin-2-yl)-1,3-benzothiazol-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3131-o3131.	0.2	0
62	2-Anilino-5,7-dimethylpyrazolo[1,5- <i>a</i>]pyrimidine-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2782-o2783.	0.2	0
63	5-Amino-3-anilino-1H-pyrazole-4-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2784-o2784.	0.2	0
64	(Z)-3-(2-Hydroxyethyl)-2-(phenylimino)-1,3-thiazolidin-4-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2371-o2372.	0.2	0
65	(2 <i>E</i>)-2-(1,3-Benzothiazol-2-yl)-3-(dimethylamino)prop-2-enenitrile. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o52-o53.	0.2	0
66	<i>N</i> -(2-Hydroxyphenyl)-4-methylbenzenesulfonamide. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o54-o54.	0.2	0
67	1-{(Z)-[(2,3-Dihydroxypropyl)amino]methylidene}naphthalen-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o136-o137.	0.2	0
68	(4E)-4-[(2-Hydroxyanilino)methylidene]-1-phenylpyrazolidine-3,5-dione dimethyl sulfoxide hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1408-o1409.	0.2	0
69	Amino[(1H-benzimidazol-2-yl)amino]methaniminium 4-methylbenzenesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1543-o1544.	0.2	0