Annemiek B Van Spriel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4114682/publications.pdf

Version: 2024-02-01

75 papers 4,849 citations

35 h-index 95266 68 g-index

81 all docs

81 docs citations

81 times ranked 5287 citing authors

#	Article	IF	CITATIONS
1	Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. New England Journal of Medicine, 2009, 361, 1760-1767.	27.0	671
2	IgA and the IgA Fc receptor. Trends in Immunology, 2001, 22, 205-211.	6.8	254
3	Early Stop Polymorphism in Human DECTIN†Is Associated with Increased <i>Candida </i> Colonization in Hematopoietic Stem Cell Transplant Recipients. Clinical Infectious Diseases, 2009, 49, 724-732.	5.8	226
4	Fcî±RI-positive liver Kupffer cells: Reappraisal of the function of immunoglobulin A in immunity. Nature Medicine, 2000, 6, 680-685.	30.7	216
5	Tetraspanins: molecular organisers of the leukocyte surface. Trends in Immunology, 2003, 24, 610-617.	6.8	205
6	Mac-1 (CD11b/CD18) is essential for Fc receptor–mediated neutrophil cytotoxicity and immunologic synapse formation. Blood, 2001, 97, 2478-2486.	1.4	189
7	Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens, 2004, 64, 533-542.	1.0	146
8	Immunotherapeutic perspective for bispecific antibodies. Trends in Immunology, 2000, 21, 391-397.	7.5	137
9	A Regulatory Role for CD37 in T Cell Proliferation. Journal of Immunology, 2004, 172, 2953-2961.	0.8	128
10	Human Immunoglobulin A Receptor (FcRI, CD89) Function in Transgenic Mice Requires Both FcR γ Chain and CR3 (CD11b/CD18). Blood, 1999, 93, 4387-4394.	1.4	126
11	The tetraspanin web revisited by super-resolution microscopy. Scientific Reports, 2015, 5, 12201.	3.3	123
12	The Y238X Stop Codon Polymorphism in the Human \hat{l}^2 -Glucan Receptor Dectin-1 and Susceptibility to Invasive Aspergillosis. Journal of Infectious Diseases, 2011, 203, 736-743.	4.0	111
13	FcαRI (CD89) as a Novel Trigger Molecule for Bispecific Antibody Therapy. Blood, 1997, 90, 4485-4492.	1.4	109
14	Immunoglobulin A-Mediated Protection against Bordetella pertussis Infection. Infection and Immunity, 2001, 69, 4846-4850.	2.2	101
15	Molecular interactions shaping the tetraspanin web. Biochemical Society Transactions, 2017, 45, 741-750.	3.4	97
16	Dectin-1 Interaction with Tetraspanin CD37 Inhibits IL-6 Production. Journal of Immunology, 2007, 178, 154-162.	0.8	96
17	The Tetraspanin CD37 Orchestrates the α ₄ β ₁ Integrin–Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival. Science Signaling, 2012, 5, ra82.	3.6	89
18	Role of Pulmonary Surfactant Protein D in Innate Defense against <i>Candida albicans</i> Infectious Diseases, 2000, 182, 917-922.	4.0	87

#	Article	IF	Citations
19	Transforming Growth Factor- \hat{l}^2 Levels in Maternal Milk and Expression in Postnatal Rat Duodenum and Ileum. Pediatric Research, 1998, 44, 524-531.	2.3	85
20	Effective Phagocytosis and Killing of Candida albicansvia Targeting Fcl³RI (CD64) or Fcl±RI (CD89) on Neutrophils. Journal of Infectious Diseases, 1999, 179, 661-669.	4.0	76
21	The Tetraspanin Protein CD37 Regulates IgA Responses and Anti-Fungal Immunity. PLoS Pathogens, 2009, 5, e1000338.	4.7	73
22	Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function. Cell Reports, 2016, 16, 2953-2966.	6.4	72
23	Targeting to $Fc\hat{l}^3$ Receptors, But Not CR3 (CD11b/CD18), Increases Clearance ofBordetella pertussis. Journal of Infectious Diseases, 2001, 183, 871-879.	4.0	69
24	The role of tetraspanins in the pathogenesis of infectious diseases. Microbes and Infection, 2010, 12, 106-112.	1.9	68
25	Mac-1 (CD11b/CD18) is crucial for effective Fc receptor–mediated immunity to melanoma. Blood, 2003, 101, 253-258.	1.4	66
26	Mac-1 (CD11b/CD18) as Accessory Molecule for Fcl+R (CD89) Binding of IgA. Journal of Immunology, 2002, 169, 3831-3836.	0.8	64
27	Tetraspanins CD37 and CD151 differentially regulate Ag presentation and Tâ€cell coâ€stimulation by DC. European Journal of Immunology, 2009, 39, 50-55.	2.9	64
28	Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood, 2016, 128, 3083-3100.	1.4	59
29	Vitamin D Controls Murine and Human Plasmacytoid Dendritic Cell Function. Journal of Investigative Dermatology, 2014, 134, 1255-1264.	0.7	57
30	Dynamic Plasma Membrane Organization: A Complex Symphony. Trends in Cell Biology, 2021, 31, 119-129.	7.9	56
31	Tetraspanin <scp>CD</scp> 37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. European Journal of Immunology, 2013, 43, 1208-1219.	2.9	49
32	Tetraspanin CD37 protects against the development of B cell lymphoma. Journal of Clinical Investigation, 2016, 126, 653-666.	8.2	47
33	Tetraspanins in the humoral immune response. Biochemical Society Transactions, 2011, 39, 512-517.	3.4	46
34	A Complementary Role for the Tetraspanins CD37 and Tssc6 in Cellular Immunity. Journal of Immunology, 2010, 185, 3158-3166.	0.8	44
35	Dendritic Cell Migration and Antigen Presentation Are Coordinated by the Opposing Functions of the Tetraspanins CD82 and CD37. Journal of Immunology, 2016, 196, 978-987.	0.8	43
36	Microdomains in the membrane landscape shape antigen-presenting cell function. Journal of Leukocyte Biology, 2013, 95, 251-263.	3.3	38

#	Article	IF	CITATIONS
37	Tetraspanins in the immune response against cancer. Immunology Letters, 2011, 138, 129-136.	2.5	37
38	Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration. Journal of Immunology, 2016, 196, 459-468.	0.8	35
39	Tetraspanin microdomains control localized protein kinase C signaling in B cells. Science Signaling, 2017, 10, .	3.6	35
40	Tetraspanin CD37 Regulates β2 Integrin–Mediated Adhesion and Migration in Neutrophils. Journal of Immunology, 2015, 195, 5770-5779.	0.8	31
41	Differential expression of tetraspanin superfamily members in dendritic cell subsets. PLoS ONE, 2017, 12, e0184317.	2.5	31
42	Molecular view on PRR cross-talk in antifungal immunity. Cellular Microbiology, 2012, 14, 467-474.	2.1	29
43	Antitumor Immunity Is Controlled by Tetraspanin Proteins. Frontiers in Immunology, 2018, 9, 1185.	4.8	29
44	Interleukin-6 is essential for glomerular immunoglobulin A deposition and the development of renal pathology in Cd37-deficientAmice. Kidney International, 2018, 93, 1356-1366.	5.2	25
45	Interleukinâ€21 Receptor Deficiency Increases the Initial Tollâ€like Receptor 2 Response but Protects Against Joint Pathology by Reducing Th1 and Th17 Cells During Streptococcal Cell Wall Arthritis. Arthritis and Rheumatology, 2014, 66, 886-895.	5. 6	24
46	Effective In Vitro Clearance of Porphyromonas gingivalis by Fcα Receptor I (CD89) on Gingival Crevicular Neutrophils. Infection and Immunity, 2001, 69, 2935-2942.	2.2	23
47	The Tetraspanin CD37 Protects Against Glomerular IgA Deposition and Renal Pathology. American Journal of Pathology, 2010, 176, 2188-2197.	3.8	23
48	Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochemistry and Cell Biology, 2015, 144, 133-146.	1.7	23
49	Intracellular Galectin-9 Controls Dendritic Cell Function by Maintaining Plasma Membrane Rigidity. IScience, 2019, 22, 240-255.	4.1	23
50	Fungal pattern-recognition receptors and tetraspanins: partners on antigen-presenting cells. Trends in Immunology, 2010, 31, 91-96.	6.8	22
51	Oestrogen receptor independent expression of progestin receptors in human meningioma—a review. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 361-365.	2.5	20
52	Novel Insights into Membrane Targeting of B Cell Lymphoma. Trends in Cancer, 2017, 3, 442-453.	7.4	19
53	Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression. IScience, 2020, 23, 101104.	4.1	19
54	High frequency of inactivating tetraspanin CD37 mutations in diffuse large B-cell lymphoma at immune-privileged sites. Blood, 2019, 134, 946-950.	1.4	18

#	Article	IF	Citations
55	A SINGLE INJECTION OF POLYETHYLENE-GLYCOL GRANULOCYTE COLONY-STIMULATING FACTOR STRONGLY PROLONGS SURVIVAL OF MICE WITH SYSTEMIC CANDIDIASIS. Cytokine, 2000, 12, 666-670.	3.2	17
56	Neutrophil $Fc^{\hat{j}3}Rl$ as Target for Immunotherapy of Invasive Candidiasis. Journal of Immunology, 2001, 166, 7019-7022.	0.8	17
57	Targeting of Porphyromonas gingivalis with a bispecific antibody directed to FcαRI (CD89) improves in vitro clearance by gingival crevicular neutrophils. Vaccine, 2004, 23, 585-594.	3.8	14
58	The origin of IgE memory and plasma cells. Cellular and Molecular Immunology, 2012, 9, 373-374.	10.5	14
59	Human Immunoglobulin A Receptor (FcRI, CD89) Function in Transgenic Mice Requires Both FcR γ Chain and CR3 (CD11b/CD18). Blood, 1999, 93, 4387-4394.	1.4	14
60	FcαRI (CD89) as a Novel Trigger Molecule for Bispecific Antibody Therapy. Blood, 1997, 90, 4485-4492.	1.4	13
61	C-type lectin-like receptor 2 (CLEC-2)-dependent DC migration is controlled by tetraspanin CD37. Journal of Cell Science, 2018, 131, .	2.0	12
62	Editorial: Membrane domains as new drug targets. Frontiers in Physiology, 2015, 6, 172.	2.8	11
63	Tetraspanin CD53 controls TÂcell immunity through regulation of CD45RO stability, mobility, and function. Cell Reports, 2022, 39, 111006.	6.4	11
64	Siteâ€specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9. FEBS Journal, 2020, 287, 5323-5344.	4.7	10
65	Editorial: Functional Relevance of Tetraspanins in the Immune System. Frontiers in Immunology, 2019, 10, 1714.	4.8	9
66	Nuclear receptor expression patterns in murine plasmacytoid and conventional dendritic cells. Molecular Immunology, 2013, 55, 409-417.	2.2	8
67	The truncated estrogen receptor alpha variant lacking exon 5 is not involved in progesterone receptor expression in meningiomas. Journal of Steroid Biochemistry and Molecular Biology, 1999, 71, 167-172.	2.5	7
68	Dendritic cell science: more than 40 years of history. Journal of Leukocyte Biology, 2013, 93, 33-38.	3.3	7
69	IRF8 is a transcriptional activator of CD37 expression in diffuse large B-cell lymphoma. Blood Advances, 2022, 6, 2254-2266.	5. 2	7
70	Giant Unilamellar Vesicles (GUVs) as a Laboratory to Study Mesoscopic Lipid Domains in Membranes. , 2014, , 24-45.		5
71	The fat and the furious: fatty acids fuel hyperproliferative germinal center B cells. Cellular and Molecular Immunology, 2020, 17, 794-796.	10.5	2
72	Meeting Report on Immunoreceptors 2014. FASEB Journal, 2015, 29, 740-744.	0.5	1

#	Article	IF	CITATIONS
73	The Role of Tetraspanin CD37 in B-Cell Malignancy. Blood, 2015, 126, 1258-1258.	1.4	1
74	Binding and Uptake of Candida albicans by Human Monocyte-Derived Dendritic Cells. Methods in Molecular Biology, 2012, 845, 319-331.	0.9	0
75	Improving Therapeutic CD20 Antibodies Requires Insight into Their Mechanism of Action. Critical Reviews in Oncogenesis, 2020, 25, 251-273.	0.4	O