Johannes Schödel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4113561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood, 2011, 117, e207-e217.	1.4	623
2	Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. European Urology, 2016, 69, 646-657.	1.9	249
3	Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 2015, 34, 4482-4490.	5.9	245
4	The Lysyl Oxidases LOX and LOXL2 Are Necessary and Sufficient to Repress E-cadherin in Hypoxia. Journal of Biological Chemistry, 2010, 285, 6658-6669.	3.4	213
5	Mechanisms of hypoxia signalling: new implications for nephrology. Nature Reviews Nephrology, 2019, 15, 641-659.	9.6	199
6	Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nature Genetics, 2012, 44, 420-425.	21.4	148
7	Extensive regulation of the nonâ€coding transcriptome by hypoxia: role of <scp>HIF</scp> in releasing paused <scp>RNA</scp> pol2. EMBO Reports, 2014, 15, 70-76.	4.5	146
8	Hypoxiaâ€inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxiaâ€inducible factorâ€1. FASEB Journal, 2010, 24, 4443-4458.	0.5	135
9	miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. British Journal of Cancer, 2013, 108, 1133-1142.	6.4	134
10	Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21276-21281.	7.1	127
11	Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor 1α (HIF-1α). PLoS ONE, 2011, 6, e16210.	2.5	120
12	Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor-1α upon LPS Activation in the Presence of Ample Oxygen. Cell Reports, 2015, 13, 2048-2055.	6.4	106
13	Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression. Journal of Leukocyte Biology, 2011, 90, 551-562.	3.3	102
14	Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1. Molecular Cell, 2014, 53, 645-654.	9.7	99
15	Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases. Journal of Biological Chemistry, 2016, 291, 20661-20673.	3.4	91
16	Regulation of Type II Transmembrane Serine Proteinase TMPRSS6 by Hypoxia-inducible Factors. Journal of Biological Chemistry, 2011, 286, 4090-4097.	3.4	90
17	Pan-genomic binding of hypoxia-inducible transcription factors. Biological Chemistry, 2013, 394, 507-517.	2.5	90
18	HIF-Prolyl Hydroxylases in the Rat Kidney. American Journal of Pathology, 2009, 174, 1663-1674.	3.8	89

2

Johannes Schã¶del

#	Article	IF	CITATIONS
19	Hypoxia-Inducible Transcription Factors Stabilization in the Thick Ascending Limb Protects against Ischemic Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 2004-2015.	6.1	88
20	Renal Tubular HIF-2α Expression Requires VHL Inactivation and Causes Fibrosis and Cysts. PLoS ONE, 2012, 7, e31034.	2.5	78
21	Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nature Communications, 2016, 7, 13183.	12.8	65
22	Atheroprotective Effects of Neuronal Nitric Oxide Synthase in Apolipoprotein E Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1539-1544.	2.4	63
23	HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. Cell Cycle, 2009, 8, 1386-1395.	2.6	62
24	Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nature Communications, 2017, 8, 15466.	12.8	57
25	Ezetimibe potently reduces vascular inflammation and arteriosclerosis in eNOS-deficient ApoE ko mice. Atherosclerosis, 2009, 202, 48-57.	0.8	39
26	Now a Nobel gas: oxygen. Pflugers Archiv European Journal of Physiology, 2019, 471, 1343-1358.	2.8	39
27	Selective Stabilization of HIF-1α in Renal Tubular Cells by 2-Oxoglutarate Analogues. American Journal of Pathology, 2012, 181, 1595-1606.	3.8	38
28	Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney International, 2010, 78, 857-867.	5.2	35
29	Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 2015, 220, 305-314.	1.9	34
30	Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)–mediated induction of the long noncoding RNA NICI. Journal of Biological Chemistry, 2020, 295, 4065-4078.	3.4	34
31	Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genetics, 2017, 13, e1006872.	3.5	34
32	Distal and proximal hypoxia response elements cooperate to regulate organ-specific erythropoietin gene expression. Haematologica, 2020, 105, 2774-2784.	3.5	27
33	Destruction of a distal hypoxia response element abolishestrans-activation of thePAG1gene mediated by HIF-independent chromatin looping. Nucleic Acids Research, 2015, 43, 5810-5823.	14.5	25
34	P2Y2R is a direct target of HIF-1α and mediates secretion-dependent cyst growth of renal cyst-forming epithelial cells. Purinergic Signalling, 2016, 12, 687-695.	2.2	25
35	Expression of neuronal nitric oxide synthase splice variants in atherosclerotic plaques of apoE knockout mice. Atherosclerosis, 2009, 206, 383-389.	0.8	23
36	Androglobin gene expression patterns and FOXJ1-dependent regulation indicate its functional association with ciliogenesis. Journal of Biological Chemistry, 2021, 296, 100291.	3.4	23

Johannes SchĶdel

#	Article	IF	CITATIONS
37	Posttranscriptional Regulation of LOXL1 Expression Via Alternative Splicing and Nonsense-Mediated mRNA Decay as an Adaptive Stress Response. , 2017, 58, 5930.		20
38	Stimulation of lipogenesis in rat adipocytes by ATP, a ligand for P2-receptors. Biochemical and Biophysical Research Communications, 2004, 321, 767-773.	2.1	17
39	α-Ketoglutarate-related inhibitors of HIF prolyl hydroxylases are substrates of renal organic anion transporters 1 (OAT1) and 4 (OAT4). Pflugers Archiv European Journal of Physiology, 2012, 464, 367-374.	2.8	17
40	Severe aortic valve stenosis and nosebleed. International Journal of Cardiology, 2007, 120, 286-287.	1.7	12
41	The renal cancer risk allele at 14q24.2 activates a novel hypoxia-inducible transcription factor-binding enhancer of DPF3 expression. Journal of Biological Chemistry, 2022, 298, 101699.	3.4	10
42	Macrophage migration inhibitory factor is regulated by HIF-1α and cAMP and promotes renal cyst cell proliferation in a macrophage-independent manner. Journal of Molecular Medicine, 2020, 98, 1547-1559.	3.9	8
43	Loss of Polycystin-1 causes cAMP-dependent switch from tubule to cyst formation. IScience, 2022, 25, 104359.	4.1	6
44	Molecular diagnosis of kidney transplant failure based on urine. American Journal of Transplantation, 2020, 20, 1410-1416.	4.7	2
45	Unlocking the complexity of hypoxia non-coding transcriptome landscape of breast cancer. BMC Genomics, 2014, 15, .	2.8	1
46	Hypoxia-inducible Factor Crosses the Checkpoint. European Urology, 2016, 70, 633-634.	1.9	1
47	Hypercalcemia mimicking myocardial infarction. Kidney International, 2019, 96, 1428.	5.2	1
48	Mapping the HIF Transcription Factor in Cancer by ChIP-Seq Technology. , 2013, , 91-117.		0