Michele Simonato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4112797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the development of biomarkers for epilepsy. Lancet Neurology, The, 2016, 15, 843-856.	10.2	283
2	Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia, 2012, 53, 571-582.	5.1	219
3	Progress in gene therapy for neurological disorders. Nature Reviews Neurology, 2013, 9, 277-291.	10.1	202
4	Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nature Communications, 2015, 6, 6031.	12.8	158
5	Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7191-7196.	7.1	134
6	Gene Therapy Tools for Brain Diseases. Frontiers in Pharmacology, 2019, 10, 724.	3.5	131
7	Brain-Derived Neurotrophic Factor mRNA and Protein Are Targeted to Discrete Dendritic Laminas by Events That Trigger Epileptogenesis. Journal of Neuroscience, 2004, 24, 6842-6852.	3.6	130
8	Blockade of Nociceptin/Orphanin FQ Transmission Attenuates Symptoms and Neurodegeneration Associated with Parkinson's Disease. Journal of Neuroscience, 2005, 25, 9591-9601.	3.6	116
9	Are the neurotrophic factors a suitable therapeutic target for the prevention of epileptogenesis?. Epilepsia, 2010, 51, 48-51.	5.1	106
10	Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. Journal of Neuroinflammation, 2010, 7, 81.	7.2	105
11	Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy. Molecular Brain Research, 1991, 11, 115-124.	2.3	103
12	The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurology, The, 2014, 13, 949-960.	10.2	101
13	MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. Scientific Reports, 2015, 5, 14143.	3.3	101
14	Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods, 2016, 260, 2-25.	2.5	93
15	Angels and demons: neurotrophic factors and epilepsy. Trends in Pharmacological Sciences, 2006, 27, 631-638.	8.7	86
16	Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53, 1868-1876.	5.1	82
17	DYNORPHIN AND EPILEPSY. Progress in Neurobiology, 1996, 50, 557-583.	5.7	79
18	Antinociceptive Activity of the N-Methyl-d-aspartate Receptor Antagonist N-(2-Indanyl)-glycinamide Hydrochloride (CHF3381) in Experimental Models of Inflammatory and Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 804-814.	2.5	77

#	Article	IF	CITATIONS
19	Acetylcholine Content in Rat Brain Is Elevated by Status Epilepticus Induced by Lithium and Pilocarpine. Journal of Neurochemistry, 1987, 49, 944-951.	3.9	72
20	Finding a better drug for epilepsy: Preclinical screening strategies and experimental trial design. Epilepsia, 2012, 53, 1860-1867.	5.1	69
21	Functional antagonism between nociceptin/orphanin FQ (N/OFQ) and corticotropin-releasing factor (CRF) in the rat brain: evidence for involvement of the bed nucleus of the stria terminalis. Psychopharmacology, 2008, 196, 523-531.	3.1	64
22	Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia, 2011, 52, 572-578.	5.1	63
23	Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends in Neurosciences, 2000, 23, 183-190.	8.6	61
24	GABA _A -current rundown of temporal lobe epilepsy is associated with repetitive activation of GABA _A "phasic―receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20944-20948.	7.1	60
25	Seizure-Suppressant and Neuroprotective Effects of Encapsulated BDNF-Producing Cells in a Rat Model of Temporal Lobe Epilepsy. Molecular Therapy - Methods and Clinical Development, 2018, 9, 211-224.	4.1	59
26	On the Role of Somatostatin in Seizure Control: Clues from the Hippocampus. Reviews in the Neurosciences, 2003, 14, 285-301.	2.9	57
27	Identification of clinically relevant biomarkers of epileptogenesis — a strategic roadmap. Nature Reviews Neurology, 2021, 17, 231-242.	10.1	54
28	What Is the Biological Significance of BDNF mRNA Targeting in the Dendrites?: Clues From Epilepsy and Cortical Development. Molecular Neurobiology, 2006, 33, 017-032.	4.0	50
29	Autoradiographic analysis of rat brain kinin B1 and B2 receptors: Normal distribution and alterations induced by epilepsy. Journal of Comparative Neurology, 2003, 461, 506-519.	1.6	49
30	Enhancement of GABA _A -current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3180-3185.	7.1	49
31	Unverricht‣undborg disease. Epileptic Disorders, 2016, 18, 28-37.	1.3	46
32	A pathogenetic hypothesis of Unverricht–Lundborg disease onset and progression. Neurobiology of Disease, 2007, 25, 675-685.	4.4	45
33	Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia, 2017, 58, 2013-2024.	5.1	45
34	Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Experimental Neurology, 2014, 257, 39-49.	4.1	44
35	Loss of cortical GABA terminals in Unverricht–Lundborg disease. Neurobiology of Disease, 2012, 47, 216-224.	4.4	42
36	Gene therapy for epilepsy. Epilepsy and Behavior, 2014, 38, 125-130.	1.7	42

3

#	Article	IF	CITATIONS
37	Adenosine receptor antagonists alter the stability of human epileptic GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15118-15123.	7.1	41
38	Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: A potential model system to study neuroprotection. Brain Research, 2011, 1385, 68-76.	2.2	41
39	Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
40	Nociceptin/Orphanin FQ Receptor Agonists Attenuate L-DOPA-Induced Dyskinesias. Journal of Neuroscience, 2012, 32, 16106-16119.	3.6	39
41	Brain Interstitial Nociceptin/Orphanin FQ Levels are Elevated in Parkinson's Disease. Movement Disorders, 2010, 25, 1723-1732.	3.9	37
42	Increased excitability in tat-transgenic mice: Role of tat in HIV-related neurological disorders. Neurobiology of Disease, 2013, 55, 110-119.	4.4	37
43	Prostaglandin F _{2α} Is Required for NMDA Receptor-Mediated Induction of c- <i>fos</i> mRNA in Dentate Gyrus Neurons. Journal of Neuroscience, 1997, 17, 117-124.	3.6	36
44	Anaphylactic shock and acute pulmonary edema after a single oral dose of acetazolamide. American Journal of Emergency Medicine, 2002, 20, 371-372.	1.6	36
45	Involvement of the Neuropeptide Nociceptin/Orphanin FQ in Kainate Seizures. Journal of Neuroscience, 2002, 22, 10030-10038.	3.6	36
46	Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Neuroscience, 2015, 301, 246-253.	2.3	36
47	Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology. PLoS ONE, 2014, 9, e105521.	2.5	36
48	Common data elements and data management: Remedy to cure underpowered preclinical studies. Epilepsy Research, 2017, 129, 87-90.	1.6	35
49	FGF-2 Overexpression Increases Excitability and Seizure Susceptibility but Decreases Seizure-Induced Cell Loss. Journal of Neuroscience, 2008, 28, 13112-13124.	3.6	33
50	Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat. European Journal of Neuroscience, 1998, 10, 955-963.	2.6	32
51	Pro-nociceptin/orphanin FQ and NOP receptor mRNA levels in the forebrain of food deprived rats. Brain Research, 2002, 957, 354-361.	2.2	32
52	Discovery and validation of blood micro <scp>RNA</scp> s as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open, 2018, 3, 427-436.	2.4	32
53	Long-Term, Targeted Delivery of GDNF from Encapsulated Cells Is Neuroprotective and Reduces Seizures in the Pilocarpine Model of Epilepsy. Journal of Neuroscience, 2019, 39, 2144-2156.	3.6	29
54	Joint <scp>AES</scp> / <scp>ILAE</scp> translational workshop to optimize preclinical epilepsy research. Epilepsia, 2013, 54, 1-2.	5.1	28

#	Article	IF	CITATIONS
55	Adenosine A1 receptors in the rat brain in the kindling model of epilepsy. European Journal of Pharmacology, 1994, 265, 121-124.	3.5	27
56	Circadian differences in the individual sensitivity to opiate overdose. Critical Care Medicine, 2001, 29, 96-101.	0.9	27
57	Kainate seizures increase nociceptin/orphanin FQ release in the rat hippocampus and thalamus: a microdialysis study. Journal of Neurochemistry, 2004, 91, 30-37.	3.9	27
58	Engineered HSV vector achieves safe long-term transgene expression in the central nervous system. Scientific Reports, 2017, 7, 1507.	3.3	27
59	Dose- and time-dependent hippocampal cholinergic lesions induced by ethylcholine mustard aziridinium ion: Effects of nerve growth factor, GM1 ganglioside, and vitamin E. Neurochemical Research, 1988, 13, 685-692.	3.3	25
60	Effects of [Nphe ¹ , Arg ¹⁴ , Lys ¹⁵] N/OFQ-NH ₂ (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. Journal of Psychopharmacology, 2017, 31, 691-703.	4.0	25
61	Alterations in Seizure Susceptibility and in Seizure-induced Plasticity after Pharmacologic and Genetic Manipulation of the Fibroblast Growth Factor-2 System. Epilepsia, 2005, 46, 52-58.	5.1	23
62	Issues for new antiepilepsy drug development. Current Opinion in Neurology, 2013, 26, 195-200.	3.6	23
63	NPY and Gene Therapy for Epilepsy: How, When, and Y. Frontiers in Molecular Neuroscience, 2020, 13, 608001.	2.9	23
64	Meta-Analysis of MicroRNAs Dysregulated in the Hippocampal Dentate Gyrus of Animal Models of Epilepsy. ENeuro, 2017, 4, ENEURO.0152-17.2017.	1.9	23
65	Somatostatin Release in the Hippocampus in the Kindling Model of Epilepsy. Journal of Neurochemistry, 2002, 74, 2497-2503.	3.9	22
66	Neuroprotective activity of CHF3381, a putative N-methyl-D-aspartate receptor antagonist. NeuroReport, 2002, 13, 2071-2074.	1.2	21
67	Changes in the sensitivity of GABAA current rundown to drug treatments in a model of temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 2013, 7, 108.	3.7	21
68	BODIPY®-conjugated neuropeptide Y ligands: new fluorescent tools to tag Y1, Y2, Y4 and Y5 receptor subtypes. British Journal of Pharmacology, 2005, 146, 1069-1081.	5.4	20
69	Proposal for a "phase <scp>II</scp> ―multicenter trial model for preclinical new antiepilepsy therapy development. Epilepsia, 2013, 54, 70-74.	5.1	19
70	Delayed epileptogenesis in nociceptin/orphanin FQ-deficient mice. NeuroReport, 2003, 14, 825-827.	1.2	17
71	Synthesis and anticonvulsant activity of a class of 2-amino 3-hydroxypropanamide and 2-aminoacetamide derivatives. Bioorganic and Medicinal Chemistry, 2006, 14, 3263-3274.	3.0	17
72	Bradykinin B2 receptors increase hippocampal excitability and susceptibility to seizures in mice. Neuroscience, 2013, 248, 392-402.	2.3	17

#	Article	IF	CITATIONS
73	Advancing research toward faster diagnosis, better treatment, and end of stigma in epilepsy. Epilepsia, 2019, 60, 1281-1292.	5.1	17
74	<i>SREBP2</i> gene therapy targeting striatal astrocytes ameliorates Huntington's disease phenotypes. Brain, 2021, 144, 3175-3190.	7.6	17
75	Different Patterns of Induction of Fibroblast Growth Factor-2 and Brain-Derived Neurotrophic Factor Messenger RNAs During Kindling Epileptogenesis, and Development of a Herpes Simplex Vector for Fibroblast Growth Factor-2 Gene Transfer in Vivo. Epilepsia, 2000, 41, S122-S126.	5.1	16
76	The biocompatibility of materials used in printed circuit board technologies with respect to primary neuronal and K562 cells. Biomaterials, 2010, 31, 1045-1054.	11.4	16
77	Limbic seizures increase pronociceptin mRNA levels in the thalamic reticular nucleus. NeuroReport, 1999, 10, 541-546.	1.2	15
78	Implication of fibroblast growth factors in epileptogenesis-associated circuit rearrangements. Frontiers in Cellular Neuroscience, 2013, 7, 152.	3.7	15
79	Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative. Epilepsia, 2017, 58, 7-9.	5.1	15
80	A Pathogenetic Hypothesis of Temporal Lobe Epilepsy. Pharmacological Research, 1993, 27, 216-226.	7.1	14
81	5â€Hydroxytryptamineâ€mediated effects of nicotine on endogenous GABA efflux from guineaâ€pig cortical slices. British Journal of Pharmacology, 1995, 116, 2724-2728.	5.4	14
82	Deletion of the Virion Host Shut-off Gene Enhances Neuronal-Selective Transgene Expression from an HSV Vector Lacking Functional IE Genes. Molecular Therapy - Methods and Clinical Development, 2017, 6, 79-90.	4.1	14
83	elF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Scientific Reports, 2017, 7, 10563.	3.3	14
84	<scp>WONOEP</scp> appraisal: New genetic approaches to study epilepsy. Epilepsia, 2014, 55, 1170-1186.	5.1	13
85	WONOEP appraisal: Development of epilepsy biomarkers—What we can learn from our patients?. Epilepsia, 2017, 58, 951-961.	5.1	13
86	Epilepsy an Update on Disease Mechanisms: The Potential Role of MicroRNAs. Frontiers in Neurology, 2018, 9, 176.	2.4	13
87	Cellular Antisilencing Elements Support Transgene Expression from Herpes Simplex Virus Vectors in the Absence of Immediate Early Gene Expression. Journal of Virology, 2018, 92, .	3.4	12
88	2017 WONOEP appraisal: Studying epilepsy as a network disease using systems biology approaches. Epilepsia, 2019, 60, 1045-1053.	5.1	12
89	Unilateral ex vivo gene therapy by GDNF in epileptic rats. Gene Therapy, 2019, 26, 65-74.	4.5	12
90	ls autopsy tissue a valid control for epilepsy surgery tissue in micro <scp>RNA</scp> studies?. Epilepsia Open, 2017, 2, 90-95.	2.4	11

#	Article	IF	CITATIONS
91	A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Currents, 2019, 19, 38-43.	0.8	11
92	Biotin deficiency facilitates kindling hyperexcitability in rats. NeuroReport, 1996, 7, 1745-1748.	1.2	9
93	Neurotrophic factors and status epilepticus. Epilepsia, 2018, 59, 87-91.	5.1	9
94	New Tools for Epilepsy Therapy. Frontiers in Cellular Neuroscience, 2018, 12, 147.	3.7	9
95	Lack of excitatory amino acid-induced effects on calcium fluxes measured with45Ca2+ in rat cerebral cortex synaptosomes. Neurochemical Research, 1989, 14, 677-682.	3.3	8
96	Changes in NPY-mediated modulation of hippocampal [3H]D-aspartate outflow in the kindling model of epilepsy. Synapse, 2003, 49, 116-124.	1.2	8
97	Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors. PLoS ONE, 2016, 11, e0150995.	2.5	8
98	Identification and characterization of outcome measures reported in animal models of epilepsy: Protocol for a systematic review of the literature–A <scp>TASK</scp> 2 report of the <scp>AES</scp> / <scp>ILAE</scp> Translational Task Force of the ILAE. Epilepsia, 2017, 58, 68-77.	5.1	8
99	Time―and Regionâ€5pecific Variations in Somatostatin Release Following Amygdala Kindling in the Rat. Journal of Neurochemistry, 1998, 70, 252-259.	3.9	7
100	Mechanisms of action of CHF3381 in the forebrain. British Journal of Pharmacology, 2003, 139, 1333-1341.	5.4	7
101	Changes in [³ H]â€UK14304 binding to α ₂ â€adrenoceptors in morphineâ€dependent guineaâ€pigs. British Journal of Pharmacology, 1995, 116, 3125-3132.	5.4	5
102	From fix to fit into the autoptic human brains. European Journal of Histochemistry, 2018, 62, .	1.5	5
103	Implication of sestrin3 in epilepsy and its comorbidities. Brain Communications, 2021, 3, fcaa130.	3.3	5
104	Gene networks and microRNAs: Promises and challenges for treating epilepsies and their comorbidities. Epilepsy and Behavior, 2021, 121, 106488.	1.7	4
105	Absence of RNAâ€binding protein FXR2P prevents prolonged phase of kainateâ€induced seizures. EMBO Reports, 2021, 22, e51404.	4.5	4
106	Kindled seizure-evoked somatostatin release in the hippocampus. NeuroReport, 2000, 11, 3209-3212.	1.2	3
107	Bystander Effect on Brain Tissue of Mesoangioblasts Producing Neurotrophins. Cell Transplantation, 2012, 21, 1613-1627.	2.5	3
108	Improvement of HSV-1 based amplicon vectors for a safe and long-lasting gene therapy in non-replicating cells. Molecular Therapy - Methods and Clinical Development, 2021, 21, 399-412.	4.1	2

#	Article	IF	CITATIONS
109	Anti-epileptogenic effect of NRP2945 in the pilocarpine model of temporal lobe epilepsy. European Journal of Pharmacology, 2021, 901, 174068.	3.5	2
110	Personalized Needles for Microinjections in the Rodent Brain. Journal of Visualized Experiments, 2018, , .	0.3	1
111	Microdialysis of Excitatory Amino Acids During EEG Recordings in Freely Moving Rats. Journal of Visualized Experiments, 2018, , .	0.3	1
112	Meeting report: EpiXchange II brings together European epilepsy research projects to discuss latest advances. Epilepsy Research, 2021, 178, 106811.	1.6	1
113	Gene Therapy for Neurological Diseases. , 2015, , 129-146.		0
114	Cell Therapy for Epilepsy. Molecular and Translational Medicine, 2017, , 85-97.	0.4	0
115	IO6â€SREBP2 delivery to striatal astrocytes normalizes transcription of cholesterol biosynthesis genes and ameliorates pathological features in huntington's disease. , 2021, , .		Ο