Marianna Kemell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4111316/publications.pdf

Version: 2024-02-01

53794 102487 5,755 165 45 66 citations h-index g-index papers 169 169 169 7987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functionalization of nitrogen-doped graphene quantum dot: A sustainable carbon-based catalyst for the production of cyclic carbonate from epoxide and CO2. Journal of Environmental Sciences, 2023, 126, 408-422.	6.1	16
2	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	15.6	23
3	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak″mmunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	21.0	25
4	lodineâ€Catalysed Dissolution of Elemental Gold in Ethanol. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
5	lodineâ€Catalysed Dissolution of Elemental Gold in Ethanol. Angewandte Chemie, 2022, 134, .	2.0	3
6	Thermoâ€reversible cellulose micro phaseâ€separation in mixtures of methyltributylphosphonium acetate and γâ€valerolactone or DMSO. ChemPhysChem, 2022, , .	2.1	2
7	Innentitelbild: Iodineâ€Catalysed Dissolution of Elemental Gold in Ethanol (Angew. Chem. 14/2022). Angewandte Chemie, 2022, 134, .	2.0	O
8	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak″mmunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	21.0	0
9	Raman spectroscopy combined with comprehensive gas chromatography for label-free characterization of plasma-derived extracellular vesicle subpopulations. Analytical Biochemistry, 2022, 647, 114672.	2.4	8
10	Understanding the influence of in situ produced dextran on wheat dough baking performance: Maturograph, biaxial extension, and dynamic mechanical thermal analysis. Food Hydrocolloids, 2022, 131, 107844.	10.7	9
11	Atomic Layer Deposition of CsI and CsPbI (sub) 3 (/sub). Chemistry of Materials, 2022, 34, 6087-6097.	6.7	6
12	Novel electroblowing synthesis of tin dioxide and composite tin dioxide/silicon dioxide submicron fibers for cobalt(<scp>ii</scp>) uptake. RSC Advances, 2021, 11, 15245-15257.	3 . 6	5
13	Analysis of the performance of Nb2O5-doped SiO2-based MIM devices for memory and neural computation applications. Solid-State Electronics, 2021, 186, 108114.	1.4	4
14	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
15	Automated On-Line Isolation and Fractionation System for Nanosized Biomacromolecules from Human Plasma. Analytical Chemistry, 2020, 92, 13058-13065.	6.5	30
16	Atomic Layer Deposition of PbS Thin Films at Low Temperatures. Chemistry of Materials, 2020, 32, 8216-8228.	6.7	16
17	Magnetic properties and resistive switching in mixture films and nanolaminates consisting of iron and silicon oxides grown by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	7
18	Fungal Treatment Modifies Kraft Lignin for Lignin- and Cellulose-Based Carbon Fiber Precursors. ACS Omega, 2020, 5, 6130-6140.	3.5	18

#	Article	IF	CITATIONS
19	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
20	Hydrogen release from liquid organic hydrogen carriers catalysed by platinum on rutile-anatase structured titania. Chemical Communications, 2020, 56, 1657-1660.	4.1	37
21	Silicon oxide-niobium oxide mixture films and nanolaminates grown by atomic layer deposition from niobium pentaethoxide and hexakis(ethylamino) disilane. Nanotechnology, 2020, 31, 195713.	2.6	5
22	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 50 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 0 rgBT /Overlock 10 T	627 Td (se 8.0	ebacate)/Nan 57
23	Carbocatalytic Oxidative Dehydrogenative Couplings of (Hetero)Aryls by Oxidized Multiâ€Walled Carbon Nanotubes in Liquid Phase. Chemistry - A European Journal, 2019, 25, 12288-12293.	3.3	15
24	Atomic Layer Deposition of Photoconductive Cu ₂ O Thin Films. ACS Omega, 2019, 4, 11205-11214.	3.5	40
25	Reversely toposelective vapor deposition at normal pressure and temperature by capillary condensation. Materials Horizons, 2019, 6, 1230-1237.	12.2	4
26	Maritime Hunter-Gatherers Adopt Cultivation at the Farming Extreme of Northern Europe 5000 Years Ago. Scientific Reports, 2019, 9, 4756.	3.3	20
27	Controlling the refractive index and third-order nonlinearity of polyimide/Ta2O5 nanolaminates for optical applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 060908.	2.1	5
28	Ni(II) Interactions in Boreal Paenibacillus sp., Methylobacterium sp., Paraburkholderia sp., and Pseudomonas sp. Strains Isolated From an Acidic, Ombrotrophic Bog. Frontiers in Microbiology, 2019, 10, 2677.	3 . 5	6
29	Novel electroblowing synthesis of submicron zirconium dioxide fibers: effect of fiber structure on antimony(<scp>v</scp>) adsorption. Nanoscale Advances, 2019, 1, 4373-4383.	4.6	12
30	Atomic Layer Deposition of Pbl ₂ Thin Films. Chemistry of Materials, 2019, 31, 1101-1109.	6.7	49
31	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	12.2	46
32	Integrated atomic layer deposition and chemical vapor reaction for the preparation of metal organic framework coatings for solid-phase microextraction Arrow. Analytica Chimica Acta, 2018, 1024, 93-100.	5.4	43
33	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	14.9	44
34	Atomic Layer Deposition of Zirconium Dioxide from Zirconium Tetraiodide and Ozone. ECS Journal of Solid State Science and Technology, 2018, 7, P1-P8.	1.8	4
35	Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. Advanced Materials, 2018, 30, e1703393.	21.0	80
36	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	5.2	65

3

#	Article	IF	Citations
37	Nanohybrids: Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870168.	21.0	4
38	Pyridinethiolâ€Assisted Dissolution of Elemental Gold in Organic Solutions. Angewandte Chemie, 2018, 130, 17350-17355.	2.0	9
39	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Diterfaces, 2018, 10, 44354-44367.	8.0	47
40	pH and Reactive Oxygen Speciesâ€Sequential Responsive Nanoâ€inâ€Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Advanced Functional Materials, 2018, 28, 1806175.	14.9	68
41	Pyridinethiolâ€Assisted Dissolution of Elemental Gold in Organic Solutions. Angewandte Chemie - International Edition, 2018, 57, 17104-17109.	13.8	22
42	Atomic Layer Deposition and Properties of HfO ₂ -Al ₂ O ₃ Nanolaminates. ECS Journal of Solid State Science and Technology, 2018, 7, P501-P508.	1.8	12
43	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
44	Atomic Layer Deposition and Performance of ZrO ₂ -Al ₂ O ₃ Thin Films. ECS Journal of Solid State Science and Technology, 2018, 7, P287-P294.	1.8	8
45	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
46	Influence of fermented faba bean flour on the nutritional, technological and sensory quality of fortified pasta. Food and Function, 2017, 8, 860-871.	4.6	46
47	Atomic layer deposition and properties of mixed Ta2O5 and ZrO2 films. AIP Advances, 2017, 7, .	1.3	26
48	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	5.2	40
49	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	3.3	15
50	Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and water. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	23
51	As2S3 thin films deposited by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 01B114.	2.1	9
52	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	7.6	49
53	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	3.3	96
54	Effects of synthesis conditions on ion exchange properties of \hat{l}_{\pm} -zirconium phosphate for Eu and Am. Radiochimica Acta, 2017, 105, 1033-1042.	1.2	8

#	Article	IF	CITATIONS
55	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq1 1 0.784314 Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	rgBT /Over 7.6	lock 10 Tf 50 35
56	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	10.0	82
57	Isosorbide synthesis from cellulose with an efficient and recyclable ruthenium catalyst. Green Chemistry, 2017, 19, 4563-4570.	9.0	18
58	Atomic layer deposition—A novel method for the ultrathin coating of minitablets. International Journal of Pharmaceutics, 2017, 531, 47-58.	5.2	15
59	WtFâ€Nano: Oneâ€Pot Dewatering and Waterâ€Free Topochemical Modification of Nanocellulose in Ionic Liquids or γâ€Valerolactone. ChemSusChem, 2017, 10, 4879-4890.	6.8	14
60	Low-Temperature Atomic Layer Deposition of Cobalt Oxide as an Effective Catalyst for Photoelectrochemical Water-Splitting Devices. Chemistry of Materials, 2017, 29, 5796-5805.	6.7	43
61	Scalable Route to the Fabrication of CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films by Electrodeposition and Vapor Conversion. ACS Omega, 2016, 1, 1296-1306.	3.5	44
62	Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnology for Biofuels, 2016, 9, 192.	6.2	95
63	Tailor-made approach for selective isolation and elution of low-density lipoproteins by immunoaffinity sorbent on silica. Analytical Biochemistry, 2016, 514, 12-23.	2.4	8
64	Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine, 2016, 11, 2471-2481.	3.3	12
65	Integration of atomic layer deposited nanolaminates on silicon waveguides (Conference) Tj ETQq1 1 0.784314	rgBT /Over	lock 10 Tf 50
66	Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers. Thin Solid Films, 2016, 611, 78-87.	1.8	19
67	Electric and Magnetic Properties of ALD-Grown BiFeO ₃ Films. Journal of Physical Chemistry C, 2016, 120, 7313-7322.	3.1	35
68	Catalysis of Cycloaddition of Carbon Dioxide and Epoxides Using a Bifunctional Schiff Base Iron(III) Catalyst. ChemistrySelect, 2016, 1, 545-548.	1.5	29
69	Microwave-assisted base-free oxidation of glucose on gold nanoparticle catalysts. Catalysis Communications, 2016, 74, 115-118.	3.3	40
70	Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sensors and Actuators B: Chemical, 2016, 222, 190-197.	7.8	69
71	Atomic layer deposition of zirconium dioxide from zirconium tetrachloride and ozone. Thin Solid Films, 2015, 589, 597-604.	1.8	22
72	High-quality slot waveguide ring resonator based on atomic layer deposition. Proceedings of SPIE, 2015, , .	0.8	1

#	Article	IF	CITATIONS
73	Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers. Journal of Polymers and the Environment, 2015, 23, 251-260.	5.0	21
74	Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate. Optics Express, 2015, 23, 26940.	3.4	14
75	Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition. Thin Solid Films, 2015, 591, 55-59.	1.8	1
76	Magnetic Properties of Polycrystalline Bismuth Ferrite Thin Films Grown by Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2014, 5, 4319-4323.	4.6	30
77	The correlation between the interference colour and growth procedure of anodic titanium dioxide nanotube arrays. Coloration Technology, 2014, 130, 1-7.	1.5	8
78	Voltage-Dependent Properties of Titanium Dioxide Nanotubes Anodized in Solutions Containing EDTA. Journal of the Electrochemical Society, 2014, 161, E61-E65.	2.9	4
79	Mn(<scp>ii</scp>) acetate: an efficient and versatile oxidation catalyst for alcohols. Catalysis Science and Technology, 2014, 4, 2564-2573.	4.1	32
80	Biological degradation of torrefied wood and charcoal. Biomass and Bioenergy, 2014, 71, 170-177.	5.7	17
81	Single-parameter model for the post-breakdown conduction characteristics of HoTiOx-based MIM capacitors. Microelectronics Reliability, 2014, 54, 1707-1711.	1.7	0
82	Interference Colors of TiO ₂ Nanotube Arrays Grown by Anodic Oxidation. Advanced Materials Research, 2014, 875-877, 370-374.	0.3	2
83	Holmium and titanium oxide nanolaminates by atomic layer deposition. Thin Solid Films, 2014, 565, 165-171.	1.8	10
84	Holmium titanium oxide thin films grown by atomic layer deposition. Thin Solid Films, 2014, 565, 261-266.	1.8	12
85	Continuous-Wave Laser Annealing of a Si/SiO ₂ Superlattice: Effect of the Ambient Atmosphere and Exposure Period. Science of Advanced Materials, 2014, 6, 1000-1010.	0.7	3
86	A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization. Sensors and Actuators B: Chemical, 2013, 189, 246-250.	7.8	16
87	Structural and Magnetic Studies on Iron Oxide and Iron-Magnesium Oxide Thin Films Deposited Using Ferrocene and (Dimethylaminomethyl)ferrocene Precursors. ECS Journal of Solid State Science and Technology, 2013, 2, N45-N54.	1.8	23
88	Photocatalytic Properties of WO ₃ /TiO ₂ Core/Shell Nanofibers prepared by Electrospinning and Atomic Layer Deposition. Chemical Vapor Deposition, 2013, 19, 149-155.	1.3	62
89	Deposition of Copper by Plasma-Enhanced Atomic Layer Deposition Using a Novel N-Heterocyclic Carbene Precursor. Chemistry of Materials, 2013, 25, 1132-1138.	6.7	46
90	Properties and nanoscale structure of polypropyleneâ€layered double hydroxide composites prepared by compatibilizerâ€free way. Journal of Applied Polymer Science, 2013, 130, 2429-2438.	2.6	1

#	Article	IF	Citations
91	Surface fingerprints of individual silicon nanocrystals in laser-annealed Si/SiO2 superlattice: Evidence of nanoeruptions of laser-pressurized silicon. Journal of Applied Physics, 2012, 111, 124302.	2.5	3
92	Conformality of remote plasma-enhanced atomic layer deposition processes: An experimental study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	55
93	Preparation of regularly structured nanotubular TiO2thin films on ITO and their modification with thin ALD-grown layers. Nanotechnology, 2012, 23, 125707.	2.6	25
94	Facile open air oxidation of benzylic alcohols in distilled water by in situ made copper(II) complexes. Applied Catalysis A: General, 2012, 449, 153-162.	4.3	17
95	Gas Sensor using Anodic TiO2 Thin Film for Monitoring Hydrogen. Procedia Engineering, 2012, 47, 791-794.	1.2	17
96	Surface Chemistry, Reactivity, and Pore Structure of Porous Silicon Oxidized by Various Methods. Langmuir, 2012, 28, 10573-10583.	3.5	82
97	In Situ Reaction Mechanism Studies on Atomic Layer Deposition of Al _{<i>x</i>} Si _{<i>y</i>} O _{<i>z</i>} from Trimethylaluminium, Hexakis(ethylamino)disilane, and Water. Chemistry of Materials, 2012, 24, 3859-3867.	6.7	17
98	Integrated photocatalytic micropillar nanoreactor electrospray ionization chip for mimicking phase I metabolic reactions. Lab on A Chip, 2011, 11, 1470.	6.0	25
99	Characterization of SrTiO<inf>3</inf>-based MIM capacitors grown by using different precursors and growth temperatures. , 2011 , , .		0
100	ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance. Journal of Physical Chemistry C, 2011, 115, 16720-16729.	3.1	55
101	Atomic Layer Deposition of Antimony and its Compounds Using Dechlorosilylation Reactions of Tris(triethylsilyl)antimony. Chemistry of Materials, 2011, 23, 247-254.	6.7	43
102	Plasma-Enhanced Atomic Layer Deposition of Silver Thin Films. Chemistry of Materials, 2011, 23, 2901-2907.	6.7	106
103	Gold–palladium supported on porous steel fiber matrix: Structured catalyst for benzyl alcohol oxidation and benzyl amine oxidation. Catalysis Communications, 2011, 12, 1260-1264.	3.3	57
104	Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. Journal of Thermal Analysis and Calorimetry, 2011, 105, 73-81.	3.6	95
105	Gold Catalysis Outside Nanoscale: Bulk Gold Catalyzes the Aerobic Oxidation of Ï€â€Activated Alcohols. ChemCatChem, 2011, 3, 1872-1875.	3.7	26
106	Mechanical strength and water resistance of paperboard coated with long chain cellulose esters. Packaging Technology and Science, 2011, 24, 249-258.	2.8	20
107	Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. Advanced Functional Materials, 2011, 21, 510-517.	14.9	240
108	Curau \tilde{A}_i Fiber Microimaging, Atomic Layer Deposition of Metal Oxide Films, and Obtaining of Nanowalled Microtubes. Chemical Vapor Deposition, 2011, 17, 58-64.	1.3	5

#	Article	IF	CITATIONS
109	Atomic Layer Deposition of Ruthenium Films on Strontium Titanate. Journal of Nanoscience and Nanotechnology, 2011, 11, 8378-8382.	0.9	1
110	Influence of precursor chemistry and growth temperature on the electrical properties of SrTiO3-based metal-insulator-metal capacitors grown by atomic layer deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 01ACO4.	1.2	7
111	Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen. Journal of the Electrochemical Society, 2011, 158, D158.	2.9	52
112	Ta ₂ O ₅ - and TiO ₂ -based nanostructures made by atomic layer deposition. Nanotechnology, 2010, 21, 035301.	2.6	19
113	Liberation of Cellulose from the Lignin Cage: A Catalytic Pretreatment Method for the Production of Cellulosic Ethanol. ChemSusChem, 2010, 3, 1142-1145.	6.8	19
114	Structure and morphology of Ru films grown by atomic layer deposition from 1-ethyl-1'-methyl-ruthenocene. Journal of Crystal Growth, 2010, 312, 2025-2032.	1.5	24
115	Atomic layer deposition and characterization of zirconium oxide–erbium oxide nanolaminates. Thin Solid Films, 2010, 519, 666-673.	1.8	14
116	Noble metal-modified TiO2 thin film photocatalyst on porous steel fiber support. Applied Catalysis B: Environmental, 2010, 95, 358-364.	20.2	63
117	Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics. Journal of the Electrochemical Society, 2010, 157, G202.	2.9	17
118	High Temperature Atomic Layer Deposition of Ruthenium from N,N-Dimethyl-1-ruthenocenylethylamine. Journal of the Electrochemical Society, 2010, 157, D35.	2.9	32
119	A bio-originated porous template for the fabrication of very long, inorganic nanotubes and nanowires. Bioinspiration and Biomimetics, 2010, 5, 026005.	2.9	11
120	Atomic Layer Deposition and Characterization of Erbium Oxide-Doped Zirconium Oxide Thin Films. Journal of the Electrochemical Society, 2010, 157, G193.	2.9	11
121	Suppression of Forward Electron Injection from Ru(dcbpy) (sub>2(NCS) (sub>2 to Nanocrystalline TiO (sub>2 Film As a Result of an Interfacial Al (sub>2O (sub>3 Barrier Layer Prepared with Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2010, 1, 536-539.	4.6	39
122	Selective-Area Atomic Layer Deposition Using Poly(vinyl pyrrolidone) as a Passivation Layer. Journal of the Electrochemical Society, 2010, 157, K10.	2.9	64
123	Effect of self-assembly via ï€-stacking to morphology and crystallinity on tritylated cellulose. Materials Letters, 2009, 63, 473-476.	2.6	5
124	Improvements and problems of Bridgman–Stockbarger method for fabrication of TIBr single crystal detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607, 126-128.	1.6	8
125	Particle growth and fragmentation of solid self-supported Ziegler–Natta-type catalysts in propylene polymerization. Journal of Molecular Catalysis A, 2009, 309, 40-49.	4.8	26
126	The effect of lignin model compound structure on the rate of oxidation catalyzed by two different fungal laccases. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 204-210.	1.8	40

#	Article	IF	CITATIONS
127	A Novel Method of Quantifying the u-Shaped Pores in SBA-15. Journal of Physical Chemistry C, 2009, 113, 20349-20354.	3.1	10
128	Atomic Layer Deposition of Iridium Thin Films by Consecutive Oxidation and Reduction Steps. Chemistry of Materials, 2009, 21, 4868-4872.	6.7	51
129	The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition. Nanotechnology, 2009, 20, 035602.	2.6	75
130	Coating of Highly Porous Fiber Matrices by Atomic Layer Deposition. Chemical Vapor Deposition, 2008, 14, 347-352.	1.3	35
131	Zirconia-supported bimetallic RhPt catalysts: Characterization and testing in autothermal reforming of simulated gasoline. Applied Catalysis B: Environmental, 2008, 84, 223-232.	20.2	51
132	New Sn(IV) and Ti(IV) bis(trimethylsilyl)amides in d,l-lactide polymerization, SEM characterization of polymers. European Polymer Journal, 2008, 44, 3797-3805.	5.4	24
133	Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films. European Polymer Journal, 2008, 44, 3564-3570.	5.4	88
134	Cobalt salen functionalised polycrystalline gold surfaces. Thin Solid Films, 2008, 516, 2948-2956.	1.8	6
135	Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers. Thin Solid Films, 2008, 517, 972-975.	1.8	61
136	Selective-Area Atomic Layer Deposition Using Poly(methyl methacrylate) Films as Mask Layers. Journal of Physical Chemistry C, 2008, 112, 15791-15795.	3.1	96
137	Atomic Layer Deposition of Iridium Oxide Thin Films from Ir(acac) < sub>3 < /sub> and Ozone. Chemistry of Materials, 2008, 20, 2903-2907.	6.7	60
138	Electrical characterization of AlxTiyOz mixtures and Al2O3â€"TiO2â€"Al2O3 nanolaminates. Journal of Applied Physics, 2007, 102, .	2.5	41
139	Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology, 2007, 18, 055303.	2.6	74
140	Atomic Layer Deposition of Nanostructured TiO2 Photocatalysts via Template Approach. Chemistry of Materials, 2007, 19, 1816-1820.	6.7	115
141	Oxidation of Elemental Gold in Alcohol Solutions. Inorganic Chemistry, 2007, 46, 3251-3256.	4.0	29
142	Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates. Advanced Materials, 2007, 19, 102-106.	21.0	126
143	Exploitation of atomic layer deposition for nanostructured materials. Materials Science and Engineering C, 2007, 27, 1504-1508.	7.3	67
144	Si/Al2O3/ZnO:Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. Microelectronic Engineering, 2007, 84, 313-318.	2.4	42

#	Article	IF	Citations
145	Degradation effects in TlBr single crystals under prolonged bias voltage. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576, 10-14.	1.6	48
146	Atomic Layer Deposition of Ferroelectric Bismuth Titanate Bi4Ti3O12Thin Films. Chemistry of Materials, 2006, 18, 3883-3888.	6.7	46
147	Transparent superhydrophobic surfaces by self-assembly of hydrophobic monolayers on nanostructured surfaces. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1453-1458.	1.8	26
148	Effects of polishing and etching on TIBr single crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 563, 58-61.	1.6	20
149	Self-Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective-Area Atomic Layer Deposition of Iridium. Chemical Vapor Deposition, 2006, 12, 415-417.	1.3	59
150	Ir/Oxide/Cellulose Composites for Catalytic Purposes Prepared by Atomic Layer Deposition. Chemical Vapor Deposition, 2006, 12, 419-422.	1.3	42
151	Rapid Coating of Through-Porous Substrates by Atomic Layer Deposition. Chemical Vapor Deposition, 2006, 12, 655-658.	1.3	28
152	Quantum dot manipulation in a single-walled carbon nanotube using a carbon nanotube gate. Applied Physics Letters, 2006, 89, 233107.	3.3	6
153	Fast pore etching. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1369-1373.	1.8	27
154	Aging of electroluminescent ZnS:Mn thin films deposited by atomic layer deposition processes. Journal of Applied Physics, 2005, 98, 113526.	2.5	14
155	Atomic Layer Deposition in Nanometer-Level Replication of Cellulosic Substances and Preparation of Photocatalytic TiO2/Cellulose Composites. Journal of the American Chemical Society, 2005, 127, 14178-14179.	13.7	180
156	Thin Film Deposition Methods for CulnSe2Solar Cells. Critical Reviews in Solid State and Materials Sciences, 2005, 30, 1-31.	12.3	270
157	Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells. Thin Solid Films, 2003, 434, 20-23.	1.8	60
158	Effects of post-deposition treatments on the photoactivity of CuInSe2 thin films deposited by the induced co-deposition mechanism. Journal of Materials Chemistry, 2001, 11, 668-672.	6.7	34
159	Electrochemical quartz crystal microbalance study on cyclic electrodeposition of PbS thin-films. Thin Solid Films, 2001, 386, 32-40.	1.8	20
160	Electrochemical Quartz Crystal Microbalance Study of the Electrodeposition Mechanisms of CulnSe[sub 2] Thin Films. Journal of the Electrochemical Society, 2001, 148, C110.	2.9	23
161	Electrochemical quartz crystal microbalance study of the electrodeposition mechanisms of Cu2â^'xSe thin films. Electrochimica Acta, 2000, 45, 3737-3748.	5.2	53
162	PbTe electrodeposition studied by combined electrochemical quartz crystal microbalance and cyclic voltammetry. Journal of Electroanalytical Chemistry, 2000, 482, 139-148.	3.8	44

#	Article	IF	CITATIONS
163	î"ENT Values for 1-Methyl-2-pyrrolidinone-SolventBinary Mixtures at 20, 30, and 50 °C. Journal of Solution Chemistry, 2000, 29, 87-99.	1.2	8
164	One-Step Electrodeposition of Cu[sub 2â°'x]Se and CuInSe[sub 2] Thin Films by the Induced Co-deposition Mechanism. Journal of the Electrochemical Society, 2000, 147, 1080.	2.9	58
165	Electrochemical quartz crystal microbalance and cyclic voltammetry studies on PbSe electrodeposition mechanisms. Journal of Materials Chemistry, 2000, 10, 519-525.	6.7	26