Chengmei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4110306/publications.pdf

Version: 2024-02-01

		47006	7	1685	
172	7,430	47		76	
papers	citations	h-index		g-index	
173	173	173		6015	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Synthesis and Characterization of the Starchâ€ZnO Hybrid Nanoparticles: Effect of the Amylose Content. Starch/Staerke, 2023, 75, .	2.1	3
2	Modification of flavonoids: methods and influences on biological activities. Critical Reviews in Food Science and Nutrition, 2023, 63, 10637-10658.	10.3	6
3	Effects of cell wall polysaccharides on the bioaccessibility of carotenoids, polyphenols, and minerals: an overview. Critical Reviews in Food Science and Nutrition, 2023, 63, 11385-11398.	10.3	6
4	Reduction of oil uptake of fried food by coatings: A review. International Journal of Food Science and Technology, 2022, 57, 3268-3277.	2.7	6
5	Oral perception of the textural and flavor characteristics of soyâ€cow blended emulsions. Journal of Texture Studies, 2022, 53, 108-121.	2.5	5
6	Effective change on rheology and structure properties of xanthan gum by industry-scale microfluidization treatment. Food Hydrocolloids, 2022, 124, 107319.	10.7	5
7	Comparative study on the extraction of macadamia (Macadamia integrifolia) oil using different processing methods. LWT - Food Science and Technology, 2022, 154, 112614.	5.2	17
8	Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review. Food Chemistry, 2022, 372, 131332.	8.2	24
9	Microcapsules with slow-release characteristics prepared by soluble small molecular starch fractions through the spray drying method. International Journal of Biological Macromolecules, 2022, 200, 34-41.	7. 5	7
10	Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. Journal of Colloid and Interface Science, 2022, 612, 525-535.	9.4	13
11	Improving foam performance using colloidal protein–polyphenol complexes: Lactoferrin and tannic acid. Food Chemistry, 2022, 377, 131950.	8.2	41
12	Disintegrating the Structure and Improving the Functionalities of Pea Fiber by Industry-Scale Microfluidizer System. Foods, 2022, 11, 418.	4.3	4
13	Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. International Journal of Biological Macromolecules, 2022, 195, 523-529.	7.5	14
14	Synergistic Anti-Inflammatory Effects of Lipophilic Grape Seed Proanthocyanidin and Camellia Oil Combination in LPS-Stimulated RAW264.7 Cells. Antioxidants, 2022, 11, 289.	5.1	10
15	Lipophilic Grape Seed Proanthocyanidin Exerts Anti-Cervical Cancer Effects in HeLa Cells and a HeLa-Derived Xenograft Zebrafish Model. Antioxidants, 2022, 11, 422.	5.1	9
16	Characterization of a novel squaleneâ€rich oil: <i>Pachira macrocarpa</i> seed oil. Journal of Food Science, 2022, 87, 1696-1707.	3.1	1
17	Physicochemical, structural, and functional properties of protein fractions and protein isolate from jackfruit seeds. Journal of Food Science, 2022, 87, 1540-1551.	3.1	5
18	Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice. Food Chemistry, 2022, 386, 132757.	8.2	9

#	Article	IF	CITATIONS
19	Pectin adsorption onto and penetration into starch granules and the effect on the gelatinization process and rheological properties. Food Hydrocolloids, 2022, 129, 107618.	10.7	15
20	Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chemistry, 2022, 386, 132819.	8.2	7
21	Impact of the frying temperature on protein structures and physicoâ€chemical characteristics of fried surimi. International Journal of Food Science and Technology, 2022, 57, 4211-4221.	2.7	12
22	Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food and Function, 2022, 13, 7707-7719.	4.6	10
23	Effects of Betanin on Pasting, Rheology and Retrogradation Properties of Different Starches. Foods, 2022, 11, 1600.	4.3	9
24	Effect of Homogenization Modified Rice Protein on the Pasting Properties of Rice Starch. Foods, 2022, 11, 1601.	4.3	7
25	Effect of pluronic block composition on the structure, stability, and cytotoxicity of liposomes. Journal of Dispersion Science and Technology, 2021, 42, 1651-1659.	2.4	1
26	Soluble starch/whey protein isolate complex-stabilized high internal phase emulsion: Interaction and stability. Food Hydrocolloids, 2021, 111, 106377.	10.7	71
27	Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chemistry, 2021, 339, 128145.	8.2	88
28	The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels. Food Hydrocolloids, 2021, 113, 106444.	10.7	38
29	Spray drying and rehydration of macadamia oil-in-water emulsions: Impact of macadamia protein isolate to chitosan hydrochloride ratio. Food Chemistry, 2021, 342, 128380.	8.2	19
30	A new site-specific monoPEGylated \hat{l}^2 -lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity. Food Chemistry, 2021, 343, 128402.	8.2	4
31	Effects of proanthocyanidins on the pasting, rheological and retrogradation properties of potato starch. Journal of the Science of Food and Agriculture, 2021, 101, 4760-4767.	3. 5	11
32	Fabrication of Oil-in-Water Emulsions with Whey Protein Isolate–Puerarin Composites: Environmental Stability and Interfacial Behavior. Foods, 2021, 10, 705.	4.3	12
33	An insight into heat-induced gelation of whey protein isolate–lactose mixed and conjugate solutions: rheological behavior, microstructure, and molecular forces. European Food Research and Technology, 2021, 247, 1711-1724.	3.3	9
34	Comparative Study of Chemical Compositions and Antioxidant Capacities of Oils Obtained from 15 Macadamia (Macadamia integrifolia) Cultivars in China. Foods, 2021, 10, 1031.	4.3	19
35	Effect of Annealing on Structural, Physicochemical, and In Vitro Digestive Properties of Starch from <i>Castanopsis sclerophylla</i> . Starch/Staerke, 2021, 73, 2100005.	2.1	14
36	Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends in Food Science and Technology, 2021, 112, 667-675.	15.1	96

#	Article	IF	CITATIONS
37	The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. Food Chemistry, 2021, 348, 129032.	8.2	28
38	Effects of Three Types of Polymeric Proanthocyanidins on Physicochemical and In Vitro Digestive Properties of Potato Starch. Foods, 2021, 10, 1394.	4.3	11
39	Physical modification on the in vitro digestibility of Tartary buckwheat starch: Repeated retrogradation under isothermal and non-isothermal conditions. International Journal of Biological Macromolecules, 2021, 184, 1026-1034.	7.5	15
40	Effect of polymeric proanthocyanidin on the physicochemical and in vitro digestive properties of different starches. LWT - Food Science and Technology, 2021, 148, 111713.	5.2	10
41	Effects of creeping fig seed polysaccharide on pasting, rheological, textural properties and in vitro digestibility of potato starch. Food Hydrocolloids, 2021, 118, 106810.	10.7	34
42	Fabrication and characterization of the W/O/W multiple emulsion through oleogelation of oil. Food Chemistry, 2021, 358, 129856.	8.2	23
43	Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes. Food Chemistry, 2021, 362, 130238.	8.2	36
44	Development of Pectin-Based Aerogels with Several Excellent Properties for the Adsorption of Pb2+. Foods, 2021, 10, 3127.	4.3	9
45	Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. Journal of Dispersion Science and Technology, 2020, 41, 207-213.	2.4	16
46	Differential inhibitory effects of organic acids on pear polyphenol oxidase in model systems and pear puree. LWT - Food Science and Technology, 2020, 118, 108704.	5.2	16
47	A new pre-gelatinized starch preparing by gelatinization and spray drying of rice starch with hydrocolloids. Carbohydrate Polymers, 2020, 229, 115485.	10.2	34
48	Analyses on the binding interaction between rice glutelin and conjugated linoleic acid by multi-spectroscopy and computational docking simulation. Journal of Food Science and Technology, 2020, 57, 886-894.	2.8	5
49	Microwave pretreatment promotes the annealing modification of rice starch. Food Chemistry, 2020, 304, 125432.	8.2	58
50	Improving instant properties of kudzu powder by extrusion treatment and its related mechanism. Food Hydrocolloids, 2020, 101, 105475.	10.7	30
51	Preparation and characterization of octenyl succinate \hat{l}^2 -limit dextrin. Carbohydrate Polymers, 2020, 229, 115527.	10.2	10
52	Effect of triglyceride on complexation between starch and fatty acid. International Journal of Biological Macromolecules, 2020, 155, 1069-1074.	7.5	33
53	Amino acid-amidated pectin: Preparation and characterization. Food Chemistry, 2020, 309, 125768.	8.2	29
54	Effects of Controlled Farâ€Infrared Treatment on Granular Swelling and Rheological Properties of Crop Starches. Starch/Staerke, 2020, 72, 1900251.	2.1	6

#	Article	IF	Citations
55	Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118023.	3.9	48
56	Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition, 2020, 60, 3594-3621.	10.3	42
57	Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions. Food Chemistry, 2020, 310, 125828.	8.2	89
58	Binding mechanism and antioxidant capacity of selected phenolic acid - \hat{l}^2 -casein complexes. Food Research International, 2020, 129, 108802.	6.2	39
59	Lipophilized Epigallocatechin Gallate Derivative Exerts Anti-Proliferation Efficacy through Induction of Cell Cycle Arrest and Apoptosis on DU145 Human Prostate Cancer Cells. Nutrients, 2020, 12, 92.	4.1	21
60	Gliadin Nanoparticles Pickering Emulgels for \hat{l}^2 -Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules, 2020, 25, 4188.	3.8	21
61	Annealing treatment of amylose and amylopectin extracted from rice starch. International Journal of Biological Macromolecules, 2020, 164, 3496-3500.	7.5	29
62	Effect of thermal processing for rutin preservation on the properties of phenolics & Description on the phenolics & Descri	7.5	17
63	Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins. Food Chemistry, 2020, 329, 127219.	8.2	88
64	Improving ordered arrangement of the short-chain amylose-lipid complex by narrowing molecular weight distribution of short-chain amylose. Carbohydrate Polymers, 2020, 240, 116359.	10.2	28
65	Screening of tea saponin-degrading strain to degrade the residual tea saponin in tea seed cake. Preparative Biochemistry and Biotechnology, 2020, 50, 697-707.	1.9	4
66	Phytochemical profiles of rice and their cellular antioxidant activity against ABAP induced oxidative stress in human hepatocellular carcinoma HepG2 cells. Food Chemistry, 2020, 318, 126484.	8.2	33
67	Novel folated pluronic F127 modified liposomes for delivery of curcumin: preparation, release, and cytotoxicity. Journal of Microencapsulation, 2020, 37, 220-229.	2.8	20
68	Retrogradation properties and in vitro digestibility of wild starch from Castanopsis sclerophylla. Food Hydrocolloids, 2020, 103, 105693.	10.7	11
69	Accelerated aging of rice by controlled microwave treatment. Food Chemistry, 2020, 323, 126853.	8.2	26
70	Effect of Cinnamon Essential Oil Nanoemulsion Combined with Ascorbic Acid on Enzymatic Browning of Cloudy Apple Juice. Food and Bioprocess Technology, 2020, 13, 860-870.	4.7	48
71	Stabilization of peanut butter by rice bran wax. Journal of Food Science, 2020, 85, 1793-1798.	3.1	9
72	Hydrothermal stability of phenolic extracts of brown rice. Food Chemistry, 2019, 271, 114-121.	8.2	34

#	Article	IF	Citations
73	Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. Food and Bioprocess Technology, 2019, 12, 1907-1916.	4.7	6
74	Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. Journal of Agricultural and Food Chemistry, 2019, 67, 7506-7511.	5.2	69
75	Effect of <i>In Vitro</i> Digestion on Phytochemical Profiles and Cellular Antioxidant Activity of Whole Grains. Journal of Agricultural and Food Chemistry, 2019, 67, 7016-7024.	5.2	46
76	Site specific PEGylation of \hat{l}^2 -lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Research International, 2019, 123, 623-630.	6.2	10
77	Phenolics, Antioxidant Activity, and In Vitro Starch Digestibility of Extruded Brown Rice Influenced by <i>Choerospondias axillaris</i> Fruit Peels Addition. Starch/Staerke, 2019, 71, 1800346.	2.1	11
78	Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and \hat{l}^2 -glucan. Food Research International, 2019, 123, 266-275.	6.2	40
79	Investigation on the binding interaction between rice glutelin and epigallocatechin-3-gallate using spectroscopic and molecular docking simulation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 215-222.	3.9	16
80	Crystallization of Shortâ€Chain Amylose: Effect of the Precipitant. Starch/Staerke, 2019, 71, 1900007.	2.1	5
81	Effect of pH on emulsification performance of a new functional protein from jackfruit seeds. Food Hydrocolloids, 2019, 93, 325-334.	10.7	46
82	Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. International Journal of Biological Macromolecules, 2019, 130, 315-322.	7. 5	69
83	Modification of retrogradation property of rice starch by improved extrusion cooking technology. Carbohydrate Polymers, 2019, 213, 192-198.	10.2	38
84	Pasting, thermal, and rheological properties of rice starch partially replaced by inulin with different degrees of polymerization. Food Hydrocolloids, 2019, 92, 228-232.	10.7	57
85	Protein–polyphenol interactions enhance the antioxidant capacity of phenolics: analysis of rice glutelin–procyanidin dimer interactions. Food and Function, 2019, 10, 765-774.	4.6	163
86	Bioaccessibility and stability of $\hat{1}^2$ -carotene encapsulated in plant-based emulsions: impact of emulsifier type and tannic acid. Food and Function, 2019, 10, 7239-7252.	4.6	27
87	Effect of dynamic high pressure microfluidization on structure and stability of pluronic F127 modified liposomes. Journal of Dispersion Science and Technology, 2019, 40, 982-989.	2.4	13
88	Changes in Granular Swelling and Rheological Properties of Food Crop Starches Modified by Superheated Steam. Starch/Staerke, 2019, 71, 1800132.	2.1	11
89	Comparison of antigenicity and conformational changes to \hat{l}^2 -lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment. Food Chemistry, 2019, 278, 491-496.	8.2	8
90	Antigenicity of \hat{l}^2 -lactoglobulin reduced by combining with oleic acid during dynamic high-pressure microfluidization: Multi-spectroscopy and molecule dynamics simulation analysis. Journal of Dairy Science, 2019, 102, 145-154.	3.4	14

#	Article	lF	CITATIONS
91	The enhancement of gastrointestinal digestibility of βâ€LG by dynamic highâ€pressure microfluidization to reduce its antigenicity. International Journal of Food Science and Technology, 2019, 54, 1677-1683.	2.7	10
92	Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature. Food Research International, 2019, 120, 748-755.	6.2	42
93	Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food and Function, 2018, 9, 1829-1839.	4.6	144
94	State Diagram for a Waxy Rice Starch–Soluble Dietary Fiber Composite System. Starch/Staerke, 2018, 70, 1700274.	2.1	0
95	Dynamic high-pressure microfluidization assisting octenyl succinic anhydride modification of rice starch. Carbohydrate Polymers, 2018, 193, 336-342.	10.2	39
96	1â€Butanolâ€Hydrochloric Acid Hydrolysis of Highâ€Amylose Maize Starch. Starch/Staerke, 2018, 70, 1700359.	2.1	8
97	Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Journal of Agricultural and Food Chemistry, 2018, 66, 1488-1497.	5.2	161
98	Investigation the interaction between procyanidin dimer and $\hat{l}\pm$ -amylase: Spectroscopic analyses and molecular docking simulation. International Journal of Biological Macromolecules, 2018, 113, 427-433.	7.5	71
99	Properties of Starch after Extrusion: A Review. Starch/Staerke, 2018, 70, 1700110.	2.1	104
100	Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International, 2018, 106, 404-409.	6.2	201
101	Dextrin-uricase conjugate: Preparation, characterization, and enzymatic properties. International Journal of Biological Macromolecules, 2018, 111, 28-32.	7.5	7
102	Comparing the binding interaction between \hat{l}^2 -lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 197-206.	3.9	97
103	Coencapsulation of (â^')-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 3691-3699.	5.2	188
104	Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. International Journal of Biological Macromolecules, 2018, 114, 1134-1143.	7.5	36
105	Fabrication and Characterization of Curcumin-Loaded Liposomes Formed from Sunflower Lecithin: Impact of Composition and Environmental Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 12421-12430.	5.2	65
106	Modification of potato starch by using superheated steam. Carbohydrate Polymers, 2018, 198, 375-384.	10.2	74
107	Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism. Food Chemistry, 2018, 268, 324-333.	8.2	85
108	Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Research International, 2018, 114, 30-37.	6.2	96

#	Article	IF	CITATIONS
109	Comparison of phytochemical profiles and antiproliferative activities of different proanthocyanidins fractions from Choerospondias axillaris fruit peels. Food Research International, 2018, 113, 298-308.	6.2	21
110	Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 9087-9096.	5.2	44
111	Impact of Titanium Dioxide on the Bioaccessibility of \hat{l}^2 -Carotene in Emulsions with Different Particle Sizes. Journal of Agricultural and Food Chemistry, 2018, 66, 9318-9325.	5.2	14
112	Modification of the digestibility of extruded rice starch by enzyme treatment (\hat{l}^2 -amylolysis): An in vitro study. Food Research International, 2018, 111, 590-596.	6.2	31
113	Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chemistry, 2017, 227, 432-443.	8.2	63
114	Alkylated pectin: Molecular characterization, conformational change and gel property. Food Hydrocolloids, 2017, 69, 341-349.	10.7	37
115	The relationship between reducing sugars and phenolic retention of brown rice after enzymatic extrusion. Journal of Cereal Science, 2017, 74, 244-249.	3.7	43
116	A study of the effect of amino acids on pasting and short-term retrogradation properties of rice starch based on molecular dynamics simulation. Starch/Staerke, 2017, 69, 1600238.	2.1	14
117	Enhancement of Carotenoid Bioaccessibility from Tomatoes Using Excipient Emulsions: Influence of Particle Size. Food Biophysics, 2017, 12, 172-185.	3.0	32
118	Phytochemical profiles and antioxidant activity of processed brown rice products. Food Chemistry, 2017, 232, 67-78.	8.2	55
119	Relating physicochemical properties of alginate-HMP complexes to their performance as drug delivery systems. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 2242-2254.	3.5	5
120	Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7, 25978-25986.	3.6	152
121	Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International, 2017, 102, 274-281.	6.2	77
122	Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers, 2017, 175, 265-272.	10.2	138
123	Preparative fractionation of dextrin by gradient alcohol precipitation. Separation Science and Technology, 2017, , 1-11.	2.5	1
124	Preparative fractionation of dextrin by polyethylene glycol: Effects of initial dextrin concentration and pH. Journal of Chromatography A, 2017, 1530, 226-231.	3.7	9
125	Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology, 2017, 11, 1087-1101.	3.0	29
126	Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydrate Polymers, 2017, 156, 322-332.	10.2	90

#	Article	IF	Citations
127	Comparison of bioactivities and phenolic composition of <i>Choerospondias axillaris</i> peels and fleshes. Journal of the Science of Food and Agriculture, 2016, 96, 2462-2471.	3.5	27
128	Influence of Lipid Phase Composition of Excipient Emulsions on Curcumin Solubility, Stability, and Bioaccessibility. Food Biophysics, 2016, 11, 213-225.	3.0	58
129	Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chemistry, 2016, 203, 430-439.	8.2	88
130	Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chemistry, 2016, 208, 309-317.	8.2	54
131	Proanthocyanidins, Isolated from <i>Choerospondias axillaris</i> Fruit Peels, Exhibit Potent Antioxidant Activities in Vitro and a Novel Anti-angiogenic Property in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 2016, 64, 3546-3556.	5.2	39
132	Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein. Food Chemistry, 2016, 213, 700-707.	8.2	50
133	Improvement in storage stability of lightly milled rice using superheated steam processing. Journal of Cereal Science, 2016, 71, 130-137.	3.7	33
134	Potential physicochemical basis of Mediterranean diet effect: Ability of emulsified olive oil to increase carotenoid bioaccessibility in raw and cooked tomatoes. Food Research International, 2016, 89, 320-329.	6.2	36
135	Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocolloids, 2016, 61, 251-260.	10.7	164
136	Freeze-thaw stability of rice starch modified by Improved Extrusion Cooking Technology. Carbohydrate Polymers, 2016, 151, 113-118.	10.2	78
137	Purification and conformational changes of bovine PEGylated \hat{l}^2 -lactoglobulin related to antigenicity. Food Chemistry, 2016, 199, 387-392.	8.2	17
138	Effects of aleurone layer on rice cooking: A histological investigation. Food Chemistry, 2016, 191, 28-35.	8.2	41
139	Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocolloids, 2016, 57, 55-61.	10.7	114
140	Fractionation of dextrin by gradient polyethylene glycol precipitation. Journal of Chromatography A, 2016, 1434, 81-90.	3.7	7
141	Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 2016, 199, 439-446.	8.2	61
142	Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions. Food Biophysics, 2016, 11, 142-153.	3.0	35
143	Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Advances, 2016, 6, 3126-3136.	3.6	93
144	Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 2016, 196, 396-404.	8.2	118

#	Article	IF	Citations
145	The Profile and Bioaccessibility of Phenolic Compounds in Cereals Influenced by Improved Extrusion Cooking Treatment. PLoS ONE, 2016, 11, e0161086.	2.5	66
146	Effect of low temperature on the retrogradation behavior of rice gels with different milling degrees. Starch/Staerke, 2015, 67, 1044-1052.	2.1	9
147	Preparation and Characterization of Nanoscale Complex Liposomes Containing Medium-Chain Fatty Acids and Vitamin C. International Journal of Food Properties, 2015, 18, 113-124.	3.0	29
148	Comparative study on the effects of nystose and fructofuranosyl nystose in the glycation reaction on the antigenicity and conformation of \hat{l}^2 -lactoglobulin. Food Chemistry, 2015, 188, 658-663.	8.2	26
149	Storage Stability and Antibacterial Activity of Eugenol Nanoliposomes Prepared by an Ethanol Injection–Dynamic High-Pressure Microfluidization Method. Journal of Food Protection, 2015, 78, 22-30.	1.7	37
150	Alkylated pectin: Synthesis, characterization, viscosity and emulsifying properties. Food Hydrocolloids, 2015, 50, 65-73.	10.7	63
151	Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes. International Journal of Biological Macromolecules, 2015, 81, 942-950.	7.5	62
152	Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes. Food and Function, 2015, 6, 3693-3701.	4.6	36
153	Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Research International, 2015, 78, 378-387.	6.2	32
154	Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry, 2015, 175, 16-24.	8.2	102
155	Predict the glass transition temperature and plasticization of \hat{l}^2 -cyclodextrin/water binary system by molecular dynamics simulation. Carbohydrate Research, 2015, 401, 89-95.	2.3	21
156	Pectin Modifications: A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1684-1698.	10.3	201
157	Correlation Analysis between Color Parameters and Sensory Characteristics of Rice with Different Milling Degrees. Journal of Food Processing and Preservation, 2014, 38, 1890-1897.	2.0	12
158	Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chemistry, 2014, 158, 255-261.	8.2	128
159	Antigenicity and conformational changes of \hat{l}^2 -lactoglobulin by dynamic high pressure microfluidization combining with glycation treatment. Journal of Dairy Science, 2014, 97, 4695-4702.	3.4	39
160	Steady-state kinetics of tryptic hydrolysis of \hat{l}^2 -lactoglobulin after dynamic high-pressure microfluidization treatment in relation to antigenicity. European Food Research and Technology, 2014, 239, 525-531.	3.3	8
161	Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces B: Biointerfaces, 2014, 117, 330-337.	5.0	161
162	Major Polyphenolics in Pineapple Peels and their Antioxidant Interactions. International Journal of Food Properties, 2014, 17, 1805-1817.	3.0	106

#	Article	IF	CITATION
163	Heat shock protein $90\hat{l}^2$ stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells. Experimental Cell Research, 2014, 326, 78-89.	2.6	26
164	The effect of high speed shearing on disaggregation and degradation of pectin from creeping fig seeds. Food Chemistry, 2014, 165, 1-8.	8.2	35
165	Effects of Cellulose, Lignin and Hemicellulose on the Retrogradation of Rice Starch. Food Science and Technology Research, 2014, 20, 375-383.	0.6	18
166	Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. Journal of Dairy Science, 2013, 96, 2061-2070.	3.4	95
167	The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 2013, 140, 289-295.	8.2	47
168	Characterization and Bioavailability of Vitamin C Nanoliposomes Prepared by Film Evaporation-Dynamic High Pressure Microfluidization. Journal of Dispersion Science and Technology, 2012, 33, 1608-1614.	2.4	42
169	Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocolloids, 2012, 28, 121-129.	10.7	186
170	Effect of dynamic high-pressure microfluidization at different temperatures on the antigenic response of bovine ^{[2} -lactoglobulin. European Food Research and Technology, 2011, 233, 95-102.	3.3	30
171	Preparation and characterization of medium-chain fatty acid liposomes by lyophilization. Journal of Liposome Research, 2010, 20, 183-190.	3.3	9
172	Characterization and High-Pressure Microfluidization-Induced Activation of Polyphenoloxidase from Chinese Pear (Pyrus pyrifolia Nakai). Journal of Agricultural and Food Chemistry, 2009, 57, 5376-5380.	5.2	121