
Christian Morsczeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4110059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Somatic stem cells for regenerative dentistry. Clinical Oral Investigations, 2008, 12, 113-118.	3.0	136
2	Dental follicle stem cells and tissue engineering. Journal of Oral Science, 2010, 52, 541-552.	1.7	136
3	Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clinical Oral Investigations, 2010, 14, 433-440.	3.0	103
4	A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation, 2009, 77, 433-441.	1.9	90
5	Dental stem cells in tooth regeneration and repair in the future. Expert Opinion on Biological Therapy, 2018, 18, 187-196.	3.1	80
6	Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clinical Oral Investigations, 2009, 13, 383-391.	3.0	58
7	The SUMO-Specific Isopeptidase SENP3 Regulates MLL1/MLL2 Methyltransferase Complexes and Controls Osteogenic Differentiation. Molecular Cell, 2014, 55, 47-58.	9.7	58
8	The Differentiation and Gene Expression Profile of Human Dental Follicle Cells. Stem Cells and Development, 2010, 19, 707-717.	2.1	56
9	Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines. Biochemical and Biophysical Research Communications, 2011, 407, 28-33.	2.1	54
10	The Transcription Factor DLX3 Regulates the Osteogenic Differentiation of Human Dental Follicle Precursor Cells. Stem Cells and Development, 2012, 21, 1936-1947.	2.1	51
11	Proteomic analysis of osteogenic differentiation of dental follicle precursor cells. Electrophoresis, 2009, 30, 1175-1184.	2.4	43
12	Identification of neural crest-derived stem cell-like cells from the corneal limbus of juvenile mice. Experimental Eye Research, 2009, 89, 209-217.	2.6	37
13	Soft matrix supports osteogenic differentiation of human dental follicle cells. Biochemical and Biophysical Research Communications, 2011, 410, 587-592.	2.1	35
14	Laminin regulates the osteogenic differentiation of dental follicle cells via integrin-α2/-β1 and the activation of the FAK/ERK signaling pathway. Cell and Tissue Research, 2014, 357, 345-354.	2.9	35
15	Collagen I induces the expression of alkaline phosphatase and osteopontin via independent activations of FAK and ERK signalling pathways. Archives of Oral Biology, 2014, 59, 1249-1255.	1.8	34
16	<i>ZBTB16</i> Induces Osteogenic Differentiation Marker Genes in Dental Follicle Cells Independent From <i>RUNX2</i> . Journal of Periodontology, 2014, 85, e144-51.	3.4	31
17	Comparison of the differentiation potential of neural crest derived progenitor cells from apical papilla (dNC-PCs) and stem cells from exfoliated deciduous teeth (SHED) into mineralising cells. Archives of Oral Biology, 2013, 58, 699-706.	1.8	27
18	Cellular senescence in dental pulp stem cells. Archives of Oral Biology, 2019, 99, 150-155.	1.8	26

CHRISTIAN MORSCZECK

#	Article	IF	CITATIONS
19	Dexamethasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx2. Cell and Tissue Research, 2014, 357, 695-705.	2.9	25
20	NOTCH1 signaling regulates the BMP2/DLX-3 directed osteogenic differentiation of dental follicle cells. Biochemical and Biophysical Research Communications, 2014, 443, 500-504.	2.1	25
21	The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells. Molecular and Cellular Biochemistry, 2018, 439, 45-52.	3.1	20
22	Comparison of surface proteomes of enterotoxigenic (ETEC) and commensal Escherichia coli strains. Journal of Microbiological Methods, 2010, 83, 13-19.	1.6	19
23	Rigid matrix supports osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Differentiation, 2012, 84, 366-370.	1.9	18
24	A Site-Specific Phosphorylation of the Focal Adhesion Kinase Controls the Formation of Spheroid Cell Clusters. Neurochemical Research, 2014, 39, 1199-1205.	3.3	18
25	Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells. Differentiation, 2012, 83, 10-16.	1.9	17
26	The induction of cellular senescence in dental follicle cells inhibits the osteogenic differentiation. Molecular and Cellular Biochemistry, 2016, 417, 1-6.	3.1	16
27	Molecular mechanisms in dental follicle precursor cells during the osteogenic differentiation. Histology and Histopathology, 2015, 30, 1161-9.	0.7	14
28	Gene expression of nestin, collagen type I and type III in human dental follicle cells after cultivation in serum-free medium. Oral and Maxillofacial Surgery, 2008, 12, 89-92.	1.3	13
29	Comparison of murine dental follicle precursor and retinal progenitor cells after neural differentiation in vitro. Cell Biology International, 2009, 33, 758-764.	3.0	13
30	Comparison of Neurosphere-like Cell Clusters Derived from Dental Follicle Precursor Cells and Retinal Müller Cells. Neurochemical Research, 2011, 36, 2002-2007.	3.3	13
31	miRNA-101 supports the osteogenic differentiation in human dental follicle cells. Archives of Oral Biology, 2016, 72, 47-50.	1.8	13
32	β-Tricalcium-phosphate stimulates the differentiation of dental follicle cells. Journal of Materials Science: Materials in Medicine, 2011, 22, 1719-1724.	3.6	12
33	Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics and Chromatin, 2017, 10, 15.	3.9	12
34	Effects of Cellular Senescence on Dental Follicle Cells. Pharmacology, 2021, 106, 137-142.	2.2	12
35	Genome-wide gene expression profiles of dental follicle stem cells. Acta Odontologica Scandinavica, 2015, 73, 93-100.	1.6	11
36	WNT5A supports viability of senescent human dental follicle cells. Molecular and Cellular Biochemistry, 2019, 455, 21-28.	3.1	11

CHRISTIAN MORSCZECK

#	Article	IF	CITATIONS
37	High endogenous expression of parathyroid hormone-related protein (PTHrP) supports osteogenic differentiation in human dental follicle cells. Histochemistry and Cell Biology, 2020, 154, 397-403.	1.7	11
38	Short telomeres correlate with a strong induction of cellular senescence in human dental follicle cells. BMC Molecular and Cell Biology, 2019, 20, 5.	2.0	10
39	p53 inhibits the osteogenic differentiation but does not induce senescence in human dental follicle cells. Differentiation, 2020, 114, 20-26.	1.9	10
40	TGF-β stimulates glial-like differentiation in murine dental follicle precursor cells (mDFPCs). Neuroscience Letters, 2010, 471, 179-184.	2.1	9
41	Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. International Journal of Molecular Sciences, 2022, 23, 5945.	4.1	9
42	Dental Stem Cell Patents. Recent Patents on DNA & Gene Sequences, 2009, 3, 39-43.	0.7	8
43	AMP-activated protein kinase and the down-stream activated process of autophagy regulate the osteogenic differentiation of human dental follicle cells. Archives of Oral Biology, 2021, 122, 104951.	1.8	7
44	Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Research and Therapy, 2021, 12, 242.	5.5	7
45	Butyrate stimulates the early process of the osteogenic differentiation but inhibits the biomineralization in dental follicle cells (DFCs). Odontology / the Society of the Nippon Dental University, 2014, 102, 154-159.	1.9	6
46	The dexamethasone induced osteogenic differentiation of dental follicle cells. Histology and Histopathology, 2017, 32, 1223-1229.	0.7	6
47	Energy Metabolism and Lipidome Are Highly Regulated during Osteogenic Differentiation of Dental Follicle Cells. Stem Cells International, 2022, 2022, 1-20.	2.5	6
48	Transgene-free induced pluripotent dental stem cells for neurogenic differentiation. Stem Cell Research and Therapy, 2012, 3, 46.	5.5	4
49	Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions. International Journal of Implant Dentistry, 2015, 1, 2.	2.7	4
50	Protein kinase A is activated during bone morphogenetic protein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hormone-related protein. Archives of Oral Biology, 2022, 138, 105409.	1.8	2
51	Total RNAâ€Isolation of Abdominal Hernia of Rats for Quantitative Realâ€Time Reverse Transcription (RT) PCR Assays. Preparative Biochemistry and Biotechnology, 2007, 38, 87-93.	1.9	1
52	Dental Follicle Stem Cells. , 2015, , 271-277.		0