Mark S Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/410818/publications.pdf

Version: 2024-02-01

121 papers 5,405 citations

38 h-index 66 g-index

129 all docs

129 docs citations

129 times ranked 7565 citing authors

#	Article	IF	CITATIONS
1	Mass spectrometry–based protein identification in proteomics—a review. Briefings in Bioinformatics, 2021, 22, 1620-1638.	6.5	55
2	Use of a Recombinant Biomarker Protein DDA Library Increases DIA Coverage of Low Abundance Plasma Proteins. Journal of Proteome Research, 2021, 20, 2374-2389.	3.7	6
3	Role of Multiomics Data to Understand Host–Pathogen Interactions in COVID-19 Pathogenesis. Journal of Proteome Research, 2021, 20, 1107-1132.	3.7	24
4	A high-stringency blueprint of the human proteome. Nature Communications, 2020, 11, 5301.	12.8	152
5	Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. Journal of Proteome Research, 2020, 19, 4735-4746.	3.7	38
6	iSwathX: an interactive web-based application for extension of DIA peptide reference libraries. Bioinformatics, 2019, 35, 538-539.	4.1	12
7	Proteomics Reveals Cellâ€Surface Urokinase Plasminogen Activator Receptor Expression Impacts Most Hallmarks of Cancer. Proteomics, 2019, 19, e1900026.	2.2	9
8	Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2019, 18, 4098-4107.	3.7	41
9	Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0. Journal of Proteome Research, 2019, 18, 4108-4116.	3.7	82
10	Potential early clinical stage colorectal cancer diagnosis using a proteomics blood test panel. Clinical Proteomics, $2019, 16, 34$.	2.1	44
11	Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. Journal of Proteome Research, 2019, 18, 4085-4097.	3.7	128
12	Oncoproteomics: Current status and future opportunities. Clinica Chimica Acta, 2019, 495, 611-624.	1.1	20
13	In Silico Peptide Repertoire of Human Olfactory Receptor Proteomes on High-Stringency Mass Spectrometry. Journal of Proteome Research, 2019, 18, 4117-4123.	3.7	9
14	Proteomics and the microbiome: pitfalls and potential. Expert Review of Proteomics, 2019, 16, 501-511.	3.0	24
15	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	8.0	580
16	Pathology, proteomics and the pathway to personalised medicine. Expert Review of Proteomics, 2018, 15, 231-243.	3.0	14
17	Tissue and plasma proteomics for early stage cancer detection. Molecular Omics, 2018, 14, 405-423.	2.8	28
18	A Transferrin Triggered Pathway for Highly Targeted Delivery of Grapheneâ€Based Nanodrugs to Treat Choroidal Melanoma. Advanced Healthcare Materials, 2018, 7, e1800377.	7.6	16

#	Article	IF	Citations
19	Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2018, 17, 4031-4041.	3.7	59
20	Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains. Metabolic Engineering, 2018, 49, 178-191.	7.0	16
21	Accelerating the search for the missing proteins in the human proteome. Nature Communications, 2017, 8, 14271.	12.8	86
22	Preanalytical Stability of Antibodies to Pathogenic Antigens. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1337-1344.	2.5	12
23	De Novo Peptide Sequencing: Deep Mining of High-Resolution Mass Spectrometry Data. Methods in Molecular Biology, 2017, 1549, 119-134.	0.9	10
24	A Systematic Bioinformatics Approach to Identify High Quality Mass Spectrometry Data and Functionally Annotate Proteins and Proteomes. Methods in Molecular Biology, 2017, 1549, 163-176.	0.9	3
25	Human Prestin: A Candidate PE1 Protein Lacking Stringent Mass Spectrometric Evidence?. Journal of Proteome Research, 2017, 16, 4531-4535.	3.7	6
26	The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays. Journal of Proteome Research, 2017, 16, 4299-4310.	3.7	185
27	Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1. Journal of Proteome Research, 2016, 15, 3961-3970.	3.7	158
28	Systems Proteomics View of the Endogenous Human Claudin Protein Family. Journal of Proteome Research, 2016, 15, 339-359.	3.7	26
29	Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vascular Cell, 2015, 7, 8.	0.2	185
30	Recent findings from the human proteome project: opening the mass spectrometry toolbox to advance cancer diagnosis, surveillance and treatment. Expert Review of Proteomics, 2015, 12, 279-293.	3.0	15
31	A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. Clinical Proteomics, 2015, 12, 10.	2.1	33
32	Transforming growth factor- \hat{l}^2 , MAPK and Wnt signaling interactions in colorectal cancer. EuPA Open Proteomics, 2015, 8, 104-115.	2.5	31
33	In-depth <i>N</i> -glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation. Glycobiology, 2015, 25, 1064-1078.	2.5	74
34	Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. Journal of Proteomics, 2015, 126, 54-67.	2.4	34
35	Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 3415-3431.	3.7	53
36	Integrin $\hat{l}\pm v\hat{l}^26$ sets the stage for colorectal cancer metastasis. Cancer and Metastasis Reviews, 2015, 34, 715-734.	5.9	30

#	Article	IF	CITATIONS
37	Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 4959-4966.	3.7	14
38	Epithelial and Stromal Cell Urokinase Plasminogen Activator Receptor Expression Differentially Correlates with Survival in Rectal Cancer Stages B and C Patients. PLoS ONE, 2015, 10, e0117786.	2.5	12
39	Correlations between Integrin $\hat{l}\pm\hat{l}/2\hat{l}^2$ 6 Expression and Clinico-Pathological Features in Stage B and Stage C Rectal Cancer. PLoS ONE, 2014, 9, e97248.	2.5	10
40	Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition. Journal of Biomedical Optics, 2014, 19, 086016.	2.6	50
41	A site for direct integrin $\hat{l}\pm v\hat{l}^26\hat{A}\cdot uPAR$ interaction from structural modelling and docking. Journal of Structural Biology, 2014, 185, 327-335.	2.8	13
42	Protannotator: A Semiautomated Pipeline for Chromosome-Wise Functional Annotation of the "Missing―Human Proteome. Journal of Proteome Research, 2014, 13, 76-83.	3.7	13
43	Characterization of the Interaction between Heterodimeric $\hat{l}\pm\nu\hat{l}^26$ Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics. Journal of Proteome Research, 2014, 13, 5956-5964.	3.7	18
44	Four Areas of Engagement Requiring Strengthening in Modern Proteomics Today. Journal of Proteome Research, 2014, 13, 5310-5318.	3.7	10
45	Comprehensive N-Glycome Profiling of Cultured Human Epithelial Breast Cells Identifies Unique Secretome N-Glycosylation Signatures Enabling Tumorigenic Subtype Classification. Journal of Proteome Research, 2014, 13, 4783-4795.	3.7	39
46	Proteomics of Huntington's Disease-Affected Human Embryonic Stem Cells Reveals an Evolving Pathology Involving Mitochondrial Dysfunction and Metabolic Disturbances. Journal of Proteome Research, 2014, 13, 5648-5659.	3.7	67
47	Analytical Validation Considerations of Multiplex Mass-Spectrometry-Based Proteomic Platforms for Measuring Protein Biomarkers. Journal of Proteome Research, 2014, 13, 5325-5332.	3.7	39
48	Biorepository Regulatory Frameworks: Building Parallel Resources That Both Promote Scientific Investigation and Protect Human Subjects. Journal of Proteome Research, 2014, 13, 5319-5324.	3.7	11
49	Comparative <i>N</i> -Glycan Profiling of Colorectal Cancer Cell Lines Reveals Unique Bisecting GlcNAc and α-2,3-Linked Sialic Acid Determinants Are Associated with Membrane Proteins of the More Metastatic/Aggressive Cell Lines. Journal of Proteome Research, 2014, 13, 277-288.	3.7	97
50	Chromosome 7-Centric Analysis of Proteomics Data from a Panel of Human Colon Carcinoma Cell Lines. Journal of Proteome Research, 2013, 12, 89-96.	3.7	6
51	An improved method for the detection and enrichment of low-abundant membrane and lipid raft-residing proteins. Journal of Proteomics, 2013, 79, 299-304.	2.4	10
52	Clinical proteomics stretch goals: EuPA 2012 roundtable report. Journal of Proteomics, 2013, 88, 37-40.	2.4	2
53	Overexpression of $\hat{l}\pm v\hat{l}^26$ Integrin Alters the Colorectal Cancer Cell Proteome in Favor of Elevated Proliferation and a Switching in Cellular Adhesion That Increases Invasion. Journal of Proteome Research, 2013, 12, 2477-2490.	3.7	22
54	Ultradepletion of Human Plasma using Chicken Antibodies: A Proof of Concept Study. Journal of Proteome Research, 2013, 12, 2399-2413.	3.7	25

#	Article	IF	Citations
55	Functional Annotation of the Human Chromosome 7 "Missing―Proteins: A Bioinformatics Approach. Journal of Proteome Research, 2013, 12, 2504-2510.	3.7	17
56	Tandem Ion Exchange Fractionation of Chicken Egg White Reveals the Presence of Proliferative Bioactivity. Journal of Agricultural and Food Chemistry, 2013, 61, 4079-4088.	5.2	10
57	Unlocking the Puzzling Biology of the Black Périgord Truffle <i>Tuber melanosporum</i> li>. Journal of Proteome Research, 2013, 12, 5349-5356.	3.7	24
58	Nanochannel pH Gradient Electrofocusing of Proteins. Analytical Chemistry, 2013, 85, 7133-7138.	6.5	22
59	Chicken Immune Responses to Variations in Human Plasma Protein Ratios: A Rationale for Polyclonal IgY Ultraimmunodepletion. Journal of Proteome Research, 2012, 11, 6291-6294.	3.7	3
60	Standard Guidelines for the Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2012, 11, 2005-2013.	3.7	135
61	An optimized approach for enrichment of glycoproteins from cell culture lysates using native multiâ€lectin affinity chromatography. Journal of Separation Science, 2012, 35, 2445-2452.	2.5	23
62	The HUPO initiative on Model Organism Proteomes, iMOP. Proteomics, 2012, 12, 340-345.	2.2	9
63	A novel, cost-effective and efficient chicken egg IgY purification procedure. Journal of Immunological Methods, 2012, 380, 73-76.	1.4	35
64	Proteomic comparison of colorectal tumours and non-neoplastic mucosa from paired patient samples using iTRAQ mass spectrometry. Molecular BioSystems, 2011, 7, 2997.	2.9	31
65	Recent Workshops of the HUPO Human Plasma Proteome Project (HPPP): A bridge with the HUPO CardioVascular Initiative and the emergence of SRM targeted proteomics. Proteomics, 2011, 11, 3439-3443.	2.2	14
66	Liver Membrane Proteome Glycosylation Changes in Mice Bearing an Extra-hepatic Tumor. Molecular and Cellular Proteomics, 2011, 10, M900538-MCP200.	3.8	38
67	Highâ€abundance protein depletion: Comparison of methods for human plasma biomarker discovery. Electrophoresis, 2010, 31, 471-482.	2.4	154
68	Evaluation of blood collection tubes using selected reaction monitoring MS: Implications for proteomic biomarker studies. Proteomics, 2010, 10, 2050-2056.	2.2	28
69	The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonateâ€washed membrane standard. Proteomics, 2010, 10, 4142-4148.	2.2	26
70	The Lectin Riddle: Glycoproteins Fractionated from Complex Mixtures Have Similar Glycomic Profiles. OMICS A Journal of Integrative Biology, 2010, 14, 487-499.	2.0	43
71	Improved Membrane Proteomics Coverage of Human Embryonic Stem Cells by Peptide IPG-IEF. Journal of Proteome Research, 2009, 8, 5642-5649.	3.7	30
72	Rat Liver Membrane Glycoproteome: Enrichment by Phase Partitioning and Glycoprotein Capture. Journal of Proteome Research, 2009, 8, 770-781.	3.7	63

#	Article	IF	Citations
73	Rapid purification method for the 26S proteasome from the filamentous fungus Trichoderma reesei. Protein Expression and Purification, 2009, 67, 156-163.	1.3	9
74	Building the 'practical' human proteome project - the next big thing in basic and clinical proteomics. Current Opinion in Molecular Therapeutics, 2009, 11, 600-2.	2.8	3
75	Guidelines for reporting the use of gel electrophoresis in proteomics. Nature Biotechnology, 2008, 26, 863-864.	17.5	61
76	Characterization of the Rat Liver Membrane Proteome Using Peptide Immobilized pH Gradient Isoelectric Focusing. Journal of Proteome Research, 2008, 7, 1036-1045.	3.7	51
77	A Combination of Immobilised pH Gradients Improves Membrane Proteomics. Journal of Proteome Research, 2008, 7, 4974-4981.	3.7	27
78	Differential Proteome Expression Associated with Urokinase Plasminogen Activator Receptor (uPAR) Suppression in Malignant Epithelial Cancer. Journal of Proteome Research, 2008, 7, 4792-4806.	3.7	14
79	Enhanced Fluorescence Detection on Homogeneous Gold Colloid Self-Assembled Monolayer Substrates. Chemistry of Materials, 2008, 20, 1788-1797.	6.7	90
80	Non-specific binding of monoclonal human erythropoietin antibody AE7A5 to Escherichia coli and Saccharomyces cerevisiae proteins. Clinica Chimica Acta, 2007, 379, 173-175.	1.1	12
81	Proteomic Identification of Lynchpin Urokinase Plasminogen Activator Receptor Protein Interactions Associated with Epithelial Cancer Malignancy. Journal of Proteome Research, 2007, 6, 1016-1028.	3.7	38
82	Comparing SILAC and Two-Dimensional Gel Electrophoresis Image Analysis for Profiling Urokinase Plasminogen Activator Signaling in Ovarian Cancer Cells. Journal of Proteome Research, 2007, 6, 2105-2112.	3.7	14
83	The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 413-432.	2.3	22
84	The development of multiple reaction monitoring assays for liverâ€derived plasma proteins. Proteomics - Clinical Applications, 2007, 1, 1570-1581.	1.6	39
85	Amplified protein sensing using deep purple fluorophores on homogeneous Au substrates. BioFactors, 2007, 30, 249-253.	5.4	4
86	Evaluation of Endogenous Plasma Peptide Extraction Methods for Mass Spectrometric Biomarker Discovery. Journal of Proteome Research, 2007, 6, 571-581.	3.7	78
87	Homogeneous Silver-Coated Nanoparticle Substrates for Enhanced Fluorescence Detection. Journal of Physical Chemistry B, 2006, 110, 23085-23091.	2.6	89
88	Genistein-induced proteome changes in the human endometrial carcinoma cell line, ishikawa. Clinical Proteomics, 2006, 2, 153-167.	2.1	2
89	Plasminogen fragmentation and increased production of extracellular matrix-degrading proteinases are associated with serous epithelial ovarian cancer progression. Gynecologic Oncology, 2004, 92, 80-88.	1.4	28
90	Mutation analysis of CDP, TP53, and KRAS in uterine leiomyomas. Molecular Carcinogenesis, 2003, 37, 61-64.	2.7	14

#	Article	IF	Citations
91	\hat{l}_{\pm} (sub>v \hat{l}^{2} (sub>6Integrin-A Marker for the Malignant Potential of Epithelial Ovarian Cancer. Journal of Histochemistry and Cytochemistry, 2002, 50, 1371-1379.	2.5	94
92	Association between ?v?6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer. Journal of Cellular Biochemistry, 2002, 84, 675-686.	2.6	58
93	Direct integrin αvβ6-ERK binding: implications for tumour growth. Oncogene, 2002, 21, 1370-1380.	5.9	90
94	The localization of the relaxed form of plasminogen activator inhibitor typeÂ2 in human gingival tissues. Histochemistry and Cell Biology, 2001, 116, 447-452.	1.7	12
95	Proteomic analysis of human plasma: Failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics, 2001, 1, 1503.	2.2	117
96	Interaction between the P14 Residue and Strand 2 of \hat{l}^2 -Sheet B Is Critical for Reactive Center Loop Insertion in Plasminogen Activator Inhibitor-2. Journal of Biological Chemistry, 2001, 276, 43383-43389.	3.4	11
97	Crystal Structure of the Complex of Plasminogen Activator Inhibitor 2 with a Peptide Mimicking the Reactive Center Loop. Journal of Biological Chemistry, 2001, 276, 43374-43382.	3.4	25
98	Topological localization of plasminogen activator inhibitor type 2. , 2000, 40, 32-41.		2
99	Evidence for intracellular cleavage of plasminogen activator inhibitor type 2 (PAI-2) in normal epidermal keratinocytes. Journal of Cellular Physiology, 2000, 182, 281-289.	4.1	25
100	Serpins in the Human Hair Follicle. Journal of Investigative Dermatology, 2000, 114, 917-922.	0.7	30
101	Neutrophil oxidative activity is differentially affected by exercise intensity and type. Journal of Science and Medicine in Sport, 2000, 3, 44-54.	1.3	48
102	The plasminogen activator inhibitor-2 gene is not required for normal murine development or survival. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 686-691.	7.1	112
103	Elevated plasminogen receptor expression occurs as a degradative phase event in cellular apoptosis. Immunology and Cell Biology, 1999, 77, 249-255.	2.3	27
104	Differentiating cells of murine stratified squamous epithelia constitutively express plasminogen activator inhibitor type 2 (PAI-2). Histochemistry and Cell Biology, 1998, 110, 559-569.	1.7	25
105	Localization of Plasminogen Activator Inhibitor Type 2 (PAI-2) in Hair and Nail: Implications for Terminal Differentiation. Journal of Investigative Dermatology, 1998, 110, 917-922.	0.7	39
106	Loss of Cell Viability Dramatically Elevates Cell Surface Plasminogen Binding and Activation. Experimental Cell Research, 1998, 242, 153-164.	2.6	39
107	Immunological Detection of Conformational Neoepitopes Associated with the Serpin Activity of Plasminogen Activator Inhibitor Type-2. Journal of Biological Chemistry, 1998, 273, 10965-10971.	3.4	26
108	Gene expression of plasminogen activation cascade components in human term gestational tissues with labour onset. Molecular Human Reproduction, 1998, 4, 101-106.	2.8	11

#	Article	IF	CITATIONS
109	Tissue-specific Expression of the Relaxed Conformation of Plasminogen Activator Inhibitor-2 and Low-density Lipoprotein Receptor-related Protein in Human Term Gestational Tissues. Journal of Histochemistry and Cytochemistry, 1997, 45, 1593-1602.	2.5	17
110	The human ENO1 gene product (recombinant human \hat{l}_{\pm} -enolase) displays characteristics required for a plasminogen binding protein. BBA - Proteins and Proteomics, 1997, 1337, 27-39.	2.1	53
111	Chromosomal localization of the human urokinase plasminogen activator receptor and plasminogen activator inhibitor type-2 genes: Implications in colorectal cancer. Journal of Gastroenterology and Hepatology (Australia), 1994, 9, 340-343.	2.8	10
112	Occupancy of the cancer urokinase receptor (uPAR): Effects of acid elution and exogenous uPA on cell surface urokinase (uPA). Biochimica Et Biophysica Acta - General Subjects, 1992, 1117, 143-152.	2.4	8
113	The effects of free radical scavengers on arachidonic acid metabolism by ovine placental microsomes. General Pharmacology, 1991, 22, 1109-1113.	0.7	2
114	The oxidant hypochlorite (OClâ^'), a product of the myeloperoxidase system, degrades articular cartilage proteoglycan aggregate. Free Radical Biology and Medicine, 1991, 10, 101-109.	2.9	67
115	Plasminogen activator inhibitor 2 (PAI-2) is not inactivated by exposure to oxidants which can be released from activated neutrophils. Biochemical and Biophysical Research Communications, 1990, 166, 993-1000.	2.1	18
116	CHANGES IN THE VISCOSITY OF HYALURONIC ACID AFTER EXPOSURE TO A MYELOPEROXIDASE-DERIVED OXIDANT. Arthritis and Rheumatism, 1989, 32, 461-467.	6.7	58
117	The pathological damage in duchenne muscular dystrophy may be due to increased intracellular oxy-radical generation caused by the absence of dystrophin and subsequent alterations in Ca2+ metabolism. Medical Hypotheses, 1989, 29, 187-193.	1.5	27
118	Micromethods in single muscle fibers. Analytical Biochemistry, 1988, 174, 575-579.	2.4	14
119	Micromethods in single muscle fibers. Analytical Biochemistry, 1988, 174, 568-574.	2.4	10
120	The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelators. Archives of Biochemistry and Biophysics, 1986, 246, 581-588.	3.0	77
121	The effect of pH on the conversion of superoxide to hydroxyl free radicals. Archives of Biochemistry and Biophysics, 1984, 234, 258-264.	3.0	119