Elzbieta Kolaczkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4106617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scrutinizing Mechanisms of the â€~Obesity Paradox in Sepsis': Obesity Is Accompanied by Diminished Formation of Neutrophil Extracellular Traps (NETs) Due to Restricted Neutrophil–Platelet Interactions. Cells, 2021, 10, 384.	4.1	17
2	Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death and Differentiation, 2021, 28, 3125-3139.	11.2	189
3	Metabolic Pathways Involved in Formation of Spontaneous and Lipopolysaccharide-Induced Neutrophil Extracellular Traps (NETs) Differ in Obesity and Systemic Inflammation. International Journal of Molecular Sciences, 2021, 22, 7718.	4.1	14
4	On Neutrophil Extracellular Trap (NET) Removal: What We Know Thus Far and Why So Little. Cells, 2020, 9, 2079.	4.1	28
5	Editorial: Intravital Microscopy Imaging of Leukocytes. Frontiers in Immunology, 2020, 11, 2137.	4.8	3
6	Imaging of Neutrophils and Neutrophil Extracellular Traps (NETs) with Intravital (In Vivo) Microscopy. Methods in Molecular Biology, 2020, 2087, 443-466.	0.9	6
7	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	11.2	295
8	Elevated Plasma Levels of Cellâ€Free DNA During Liver Transplantation Are Associated With Activation of Coagulation. Liver Transplantation, 2019, 25, 180-181.	2.4	0
9	Reduced Neutrophil Extracellular Trap (NET) Formation During Systemic Inflammation in Mice With Menkes Disease and Wilson Disease: Copper Requirement for NET Release. Frontiers in Immunology, 2019, 10, 3021.	4.8	13
10	Challenges in 3D culturing of neutrophils: Assessment of cell viability. Journal of Immunological Methods, 2018, 457, 73-77.	1.4	14
11	Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell and Tissue Research, 2018, 371, 473-488.	2.9	56
12	Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood, 2017, 129, 1357-1367.	1.4	472
13	CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions. Frontiers in Immunology, 2017, 8, 530.	4.8	33
14	Decreased expression of the \hat{l}^22 integrin on tumor cells is associated with a reduction in liver metastasis of colorectal cancer in mice. BMC Cancer, 2017, 17, 827.	2.6	29
15	Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib: A comparative study. PLoS ONE, 2017, 12, e0174853.	2.5	35
16	Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement. PLoS ONE, 2016, 11, e0159031.	2.5	22
17	The older the faster: aged neutrophils in inflammation. Blood, 2016, 128, 2280-2282.	1.4	19
18	Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2016, 186, 417-430.	1.5	19

#	Article	IF	CITATIONS
19	Metallothionein 2 and Heat Shock Protein 72 Protect Allolobophora chlorotica from Cadmium But Not Nickel or Copper Exposure: Body Malformation and Coelomocyte Functioning. Archives of Environmental Contamination and Toxicology, 2016, 71, 267-277.	4.1	10
20	An iminosugar-based heparanase inhibitor heparastatin (SF4) suppresses infiltration of neutrophils and monocytes into inflamed dorsal air pouches. International Immunopharmacology, 2016, 35, 15-21.	3.8	11
21	Imaging the dynamic plateletâ€neutrophil response in sterile liver injury and repair in mice. Hepatology, 2015, 62, 1593-1605.	7.3	110
22	Oxygen plasma surface modification augments poly(Lâ€lactideâ€≺i>coâ€glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages. Journal of Biomedical Materials Research - Part A, 2015, 103, 3965-3977.	4.0	12
23	A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. Journal of Experimental Medicine, 2015, 212, 447-456.	8.5	367
24	Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nature Communications, 2015, 6, 6673.	12.8	453
25	Interference with Glycosaminoglycan-Chemokine Interactions with a Probe to Alter Leukocyte Recruitment and Inflammation In Vivo. PLoS ONE, 2014, 9, e104107.	2.5	15
26	Biocompatibility evaluation of glycolideâ€containing polyesters in contact with osteoblasts and fibroblasts. Journal of Applied Polymer Science, 2013, 127, 3256-3268.	2.6	3
27	Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells. Endocrine, 2013, 43, 394-403.	2.3	51
28	Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways. Fish and Shellfish Immunology, 2013, 34, 1244-1252.	3.6	56
29	Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 2013, 13, 159-175.	22.7	3,964
30	Impact of Poly(L-lactide) versus Poly(L-Lactide-co-Trimethylene Carbonate) on Biological Characteristics of Fibroblasts and Osteoblasts*. Folia Biologica, 2013, 61, 11-24.	0.5	3
31	Effects of Aliphatic Polyesters on Activation of the Immune System: Studies on Macrophages. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 715-738.	3.5	18
32	Angiogenic neutrophils: a novel subpopulation paradigm. Blood, 2012, 120, 4455-4457.	1.4	17
33	Toll-Like Receptors Expression and NF-κB Activation in Peritoneal Leukocytes in Morphine-Mediated Impairment of Zymosan-Induced Peritonitis in Swiss Mice. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 373-382.	2.3	7
34	Ceramic modifications of porous titanium: Effects on macrophage activation. Tissue and Cell, 2012, 44, 391-400.	2.2	27
35	Modulation of zymosan-induced peritonitis by riboflavin co-injection, pre-injection or post-injection in male Swiss mice. Life Sciences, 2012, 91, 1351-1357.	4.3	13
36	Strain-specific effects of riboflavin supplementation on zymosan-induced peritonitis in C57BL/6J, BALB/c and CBA mice. Life Sciences, 2011, 88, 265-271.	4.3	21

#	Article	IF	CITATIONS
37	Morphine-Modulated Mast Cell Migration and Proliferation during Early Stages of Zymosan-Induced Peritonitis in CBA Mice. Folia Biologica, 2011, 59, 99-106.	0.5	5
38	Inflammatory macrophages, and not only neutrophils, die by apoptosis during acute peritonitis. Immunobiology, 2010, 215, 492-504.	1.9	40
39	Neutrophil elastase activity compensates for a genetic lack of matrix metalloproteinase-9 (MMP-9) in leukocyte infiltration in a model of experimental peritonitis. Journal of Leukocyte Biology, 2009, 85, 374-381.	3.3	36
40	Resident peritoneal macrophages and mast cells are important cellular sites of COX-1 and COX-2 activity during acute peritoneal inflammation. Archivum Immunologiae Et Therapiae Experimentalis, 2009, 57, 459-466.	2.3	13
41	Increased cyclooxygenase activity impairs apoptosis of inflammatory neutrophils in mice lacking gelatinase B/matrix metalloproteinaseâ€9. Immunology, 2009, 128, e262-74.	4.4	8
42	Altered apoptosis of inflammatory neutrophils in MMP-9-deficient mice is due to lower expression and activity of caspase-3. Immunology Letters, 2009, 126, 73-82.	2.5	17
43	Role of lymphocytes in the course of murine zymosan-induced peritonitis. Inflammation Research, 2008, 57, 272-278.	4.0	38
44	Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology, 2008, 125, 601-610.	4.4	65
45	Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: Comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology, 2008, 213, 109-124.	1.9	44
46	Flow cytometric measurement of neutral red accumulation in earthworm coelomocytes: Novel assay for studies on heavy metal exposure. European Journal of Soil Biology, 2007, 43, S116-S120.	3.2	25
47	Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: Superior contribution of macrophages over mast cells. Immunology Letters, 2007, 113, 99-106.	2.5	24
48	Gelatinase B/matrix metalloproteinase-9 contributes to cellular infiltration in a murine model of zymosan peritonitis. Immunobiology, 2006, 211, 137-148.	1.9	49
49	Enhanced early vascular permeability in gelatinase B (MMP-9)-deficient mice: putative contribution of COX-1-derived PGE2 of macrophage origin. Journal of Leukocyte Biology, 2006, 80, 125-132.	3.3	21
50	Effects of macrophage depletion on peritoneal inflammation in swiss mice, edible frogs and goldfish. Folia Biologica, 2004, 52, 225-231.	0.5	11
51	Shedding light on vascular permeability during peritonitis: role of mast cell histamine versus macrophage cysteinyl leukotrienes. Inflammation Research, 2002, 51, 519-521.	4.0	15
52	Early vascular permeability in murine experimental peritonitis is co-mediated by resident peritoneal macrophages and mast cells: crucial involvement of macrophage-derived cysteinyl-leukotrienes. Inflammation, 2002, 26, 61-71.	3.8	64
53	Strain differences in some immune parameters can be obscured by circadian variations and laboratory routines: studies of male C57BL/6J, Balb/c and CB6 F1 mice. Laboratory Animals, 2001, 35, 91-100.	1.0	27
54	Itaconate Suppresses Formation of Neutrophil Extracellular Traps (NETs): Involvement of Hypoxia-Inducible Factor 11± (Hif-11±) and Heme Oxygenase (HO-1). Frontiers in Immunology, 0, 13, .	4.8	7