

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4105710/publications.pdf Version: 2024-02-01

ΔΑΤΗ Ι ΜΑΥ

#	Article	IF	CITATIONS
1	The mammalian superior colliculus: laminar structure and connections. Progress in Brain Research, 2006, 151, 321-378.	1.4	543
2	Circuits for Action and Cognition: A View from the Superior Colliculus. Annual Review of Vision Science, 2017, 3, 197-226.	4.4	254
3	The Edingerâ€Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. Journal of Comparative Neurology, 2011, 519, 1413-1434.	1.6	168
4	Morphological substrate for eyelid movements: Innervation and structure of primate levator palpebrae superioris and orbicularis oculi muscles. Journal of Comparative Neurology, 1989, 287, 64-81.	1.6	149
5	Comparison of the distribution and somatodendritic morphology of tectotectal neurons in the cat and monkey. Visual Neuroscience, 1998, 15, 903-922.	1.0	86
6	Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. Journal of Comparative Neurology, 1984, 226, 357-376.	1.6	82
7	Interconnections between the primate cerebellum and midbrain near-response regions. Journal of Comparative Neurology, 1992, 315, 98-116.	1.6	82
8	The laminar distribution of macaque tectobulbar and tectospinal neurons. Visual Neuroscience, 1992, 8, 257-276.	1.0	74
9	The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Experimental Brain Research, 2000, 131, 10-21.	1.5	74
10	Comparison of the distributions of urocortinâ€containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. Journal of Comparative Neurology, 2008, 507, 1300-1316.	1.6	60
11	Tectonigral projections in the primate: a pathway for preâ€attentive sensory input to midbrain dopaminergic neurons. European Journal of Neuroscience, 2009, 29, 575-587.	2.6	56
12	Parvalbumin and GABA Microcircuits in the Mouse Superior Colliculus. Frontiers in Neural Circuits, 2018, 12, 35.	2.8	54
13	Nonintralaminar thalamostriatal projections in the gray squirrel (Sciurus carolinensis) and tree shrew (Tupaia glis). Journal of Comparative Neurology, 1984, 230, 33-46.	1.6	50
14	Axons Giving Rise to the Palisade Endings of Feline Extraocular Muscles Display Motor Features. Journal of Neuroscience, 2013, 33, 2784-2793.	3.6	43
15	Morphology and distribution of serotoninergic and oculomotor internuclear neurons in the cat midbrain. Journal of Comparative Neurology, 1987, 266, 150-170.	1.6	42
16	A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei. Brain Structure and Function, 2016, 221, 4073-4089.	2.3	38
17	Anatomical Evidence that the Superior Colliculus Controls Saccades through Central Mesencephalic Reticular Formation Gating of Omnipause Neuron Activity. Journal of Neuroscience, 2013, 33, 16285-16296.	3.6	33
18	Premotor circuits controlling eyelid movements in conjunction with vertical saccades in the cat: I. The rostral interstitial nucleus of the medial longitudinal fasciculus. Journal of Comparative Neurology, 2002, 450, 183-202.	1.6	31

PAUL J MAY

#	Article	IF	CITATIONS
19	Palisade Endings Are a Constant Feature in the Extraocular Muscles of Frontal-Eyed, But Not Lateral-Eyed, Animals. , 2016, 57, 320.		31
20	The Mesencephalic Reticular Formation as a Conduit for Primate Collicular Gaze Control: Tectal Inputs to Neurons Targeting the Spinal Cord and Medulla. Anatomical Record, 2009, 292, 1162-1181.	1.4	30
21	The pupillary and ciliary components of the cat Edinger-Westphal nucleus: A transsynaptic transport investigation. Visual Neuroscience, 2002, 19, 15-29.	1.0	29
22	Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. Journal of Neuroscience Methods, 2020, 345, 108859.	2.5	28
23	NADPH-diaphorase reactivity in ciliary ganglion neurons: A comparison of distributions in the pigeon, cat, and monkey. Visual Neuroscience, 1994, 11, 1027-1031.	1.0	27
24	Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neuroscience Letters, 2011, 489, 89-93.	2.1	27
25	A central mesencephalic reticular formation projection to medial rectus motoneurons supplying singly and multiply innervated extraocular muscle fibers. Journal of Comparative Neurology, 2017, 525, 2000-2018.	1.6	27
26	Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate Edinger–Westphal nucleus. Progress in Brain Research, 2008, 171, 97-106.	1.4	26
27	Morphology and ultrastructure of medial rectus subgroup motoneurons in the macaque monkey. Journal of Comparative Neurology, 2014, 522, 626-641.	1.6	26
28	Connections between the zona incerta and superior colliculus in the monkey and squirrel. Brain Structure and Function, 2018, 223, 371-390.	2.3	26
29	Premotor circuits controlling eyelid movements in conjunction with vertical saccades in the cat: II. Interstitial nucleus of Cajal. Journal of Comparative Neurology, 2007, 500, 676-692.	1.6	25
30	Organization of the extraocular and preganglionic motoneurons supplying the orbit in the lesser galago. The Anatomical Record, 1993, 237, 89-103.	1.8	23
31	The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Experimental Brain Research, 2008, 189, 485-496.	1.5	23
32	Feed-forward and feedback projections of midbrain reticular formation neurons in the cat. Frontiers in Neuroanatomy, 2014, 7, 55.	1.7	23
33	Anatomical Evidence for Interconnections Between the Central Mesencephalic Reticular Formation and Cervical Spinal Cord in the Cat and Macaque. Anatomical Record, 2008, 291, 141-160.	1.4	22
34	The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus. Experimental Brain Research, 2010, 201, 701-717.	1.5	22
35	A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Structure and Function, 2016, 221, 2209-2229.	2.3	22
36	An Anatomic Characterization of the Midbrain Near Response Neurons in the Macaque Monkey. , 2018, 59, 1486.		22

PAUL J MAY

#	Article	IF	CITATIONS
37	Neural control of rapid binocular eye movements: Saccade-vergence burst neurons. Proceedings of the United States of America, 2020, 117, 29123-29132.	7.1	22
38	Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus. Journal of Comparative Neurology, 2014, 522, 3960-3977.	1.6	18
39	Central mesencephalic reticular formation control of the near response: lens accommodation circuits. Journal of Neurophysiology, 2019, 121, 1692-1703.	1.8	17
40	Examination of feline extraocular motoneuron pools as a function of muscle fiber innervation type and muscle layer. Journal of Comparative Neurology, 2017, 525, 919-935.	1.6	15
41	Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal. Frontiers in Neuroanatomy, 2017, 11, 36.	1.7	15
42	Physiological and anatomical evidence for an inhibitory trigeminoâ€oculomotor pathway in the cat. Journal of Comparative Neurology, 2012, 520, 2218-2240.	1.6	14
43	Central pupillary light reflex circuits in the cat: II. Morphology, ultrastructure, and inputs of preganglionic motoneurons. Journal of Comparative Neurology, 2014, 522, 3978-4002.	1.6	12
44	Midbrain Reticular Formation Circuitry Subserving Gaze in the Cat. Annals of the New York Academy of Sciences, 2002, 956, 405-408.	3.8	10
45	Projections of somatosensory cortex and frontal eye fields onto incertotectal neurons in the cat. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 1310-1329.	2.0	10
46	Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. Journal of Neurophysiology, 2016, 115, 581-601.	1.8	9
47	GABAergic innervation of the ciliary ganglion in macaque monkeys – A light and electron microscopic study. Journal of Comparative Neurology, 2017, 525, 1517-1531.	1.6	9
48	Macaque monkey trigeminal blink reflex circuits targeting orbicularis oculi motoneurons. Journal of Comparative Neurology, 2021, 529, 2842-2864.	1.6	9
49	The eyelid levator muscle: Servant of two masters. Movement Disorders, 2002, 17, S4-S7.	3.9	8
50	Morphology and connections of intratrigeminal cells and axons in the macaque monkey. Frontiers in Neuroanatomy, 2013, 7, 11.	1.7	8
51	Mouse Extraocular Muscles and the Musculotopic Organization of Their Innervation. Anatomical Record, 2019, 302, 1865-1885.	1.4	7
52	Pupillary light reflex circuits in the Macaque Monkey: the olivary pretectal nucleus. Brain Structure and Function, 2020, 225, 305-320.	2.3	7
53	Postembedding Immunohistochemistry for Inhibitory Neurotransmitters in Conjunction with Neuroanatomical Tracers. Neuromethods, 2015, , 181-203.	0.3	6
54	Pupillary light reflex circuits in the macaque monkey: the preganglionic Edinger–Westphal nucleus. Brain Structure and Function, 2020, 225, 403-425.	2.3	6

PAUL J MAY

#	Article	IF	CITATIONS
55	Cerebellar projections to the macaque midbrain tegmentum: Possible near response connections. Visual Neuroscience, 2021, 38, E007.	1.0	6
56	A Perioculomotor Nitridergic Population in the Macaque and Cat. , 2012, 53, 5751.		4
57	Is Primate Lens Accommodation Unilaterally or Bilaterally Controlled?. , 2020, 61, 5.		4
58	The Substantia Nigra Pars Reticulata Modulates Error-Based Saccadic Learning in Monkeys. ENeuro, 2021, 8, ENEURO.0519-20.2021.	1.9	4
59	Superior colliculus projections to target populations in the supraoculomotor area of the macaque monkey. Visual Neuroscience, 2021, 38, .	1.0	4
60	Macaque monkey trigeminal blink reflex circuits targeting levator palpebrae superioris motoneurons. Journal of Comparative Neurology, 2021, 529, 3389-3409.	1.6	3
61	A Novel Tectal/Pretectal Population of Premotor Lens Accommodation Neurons. , 2022, 63, 35.		3
62	Morphologic Characterization of Trigeminothalamic Terminal Arbors Arising From the Principal Nucleus in the Macaque. Frontiers in Neuroanatomy, 2020, 14, 562673.	1.7	2
63	Passive eye movements induced by electromagnetic force (EMF) in rats. Zoological Research, 2019, 40, 211-218.	2.1	1
64	GABAergic innervation of the ciliary ganglion in macaque monkeys - A light and electron microscopic study. Journal of Comparative Neurology, 2017, 525, spc1-spc1.	1.6	0
65	The Macaque Midbrain Reticular Formation Sends Different Types of Feedback to Each Side of the Superior Colliculus. FASEB Journal, 2009, 23, 832.3.	0.5	0
66	The Origin of Inputs to the Monkey Central Mesencephalic Reticular Formation (cMRF). FASEB Journal, 2009, 23, 832.2.	0.5	0
67	Expression of Mineralocorticoid and Glucocorticoid receptors in Preâ€autonomic Neurons of the Rat Paraventricular Nucleus. FASEB Journal, 2013, 27, 535.4.	0.5	0