Amit Bhatnagar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4103032/publications.pdf

Version: 2024-02-01

238 papers 23,494 citations

76 h-index 145 g-index

239 all docs

239 docs citations

times ranked

239

22168 citing authors

#	Article	IF	CITATIONS
1	Lignin waste processing into solid, liquid, and gaseous fuels: a comprehensive review. Biomass Conversion and Biorefinery, 2023, 13, 4515-4553.	4.6	20
2	Effective removal of nickel(II) and zinc(II) in mono-compound and binary systems from aqueous solutions by application of alginate-based materials. International Journal of Environmental Analytical Chemistry, 2023, 103, 2016-2037.	3.3	12
3	Bromate formation control by enhanced ozonation: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1154-1198.	12.8	5
4	Recent advances in the application of microalgae and its derivatives for preservation, quality improvement, and shelf-life extension of seafood. Critical Reviews in Food Science and Nutrition, 2022, 62, 6055-6068.	10.3	17
5	Valorization of peanut wastes into a catalyst in production of biodiesel. International Journal of Energy Research, 2022, 46, 1299-1312.	4.5	6
6	Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 2022, 427, 130884.	12.7	192
7	Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification. Energy, 2022, 238, 121700.	8.8	35
8	Growth of marine diatoms on aquaculture wastewater supplemented with nanosilica. Bioresource Technology, 2022, 344, 126210.	9.6	12
9	Genetic and non-genetic tailoring of microalgae for the enhanced production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) – A review. Bioresource Technology, 2022, 344, 126250.	9.6	22
10	Recent progress and challenges facing ballast water treatment $\hat{a} \in \text{``A review. Chemosphere, 2022, 291, } 132776.$	8.2	45
11	The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource Technology, 2022, 344, 126303.	9.6	18
12	Nanoporous Magnetic Carbon Nanofiber Aerogels with Embedded α-Fe/γ-Fe Core–Shell Nanoparticles for Oil Sorption and Recovery. ACS Applied Nano Materials, 2022, 5, 2885-2896.	5.0	21
13	Biochar as a catalyst in the production of syngas and biodiesel from peanut waste. International Journal of Energy Research, 2022, 46, 19287-19299.	4.5	1
14	Synthesis and Characterization of a Magnetic Carbon Nanofiber Derived from Bacterial Cellulose for the Removal of Diclofenac from Water. ACS Omega, 2022, 7, 7572-7584.	3.5	7
15	Future feed resources in sustainable salmonid production: A review. Reviews in Aquaculture, 2022, 14, 1790-1812.	9.0	48
16	A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity. Bioresource Technology, 2022, 351, 127048.	9.6	42
17	Green synthesis of graphite-based photo-Fenton nanocatalyst from waste tar via a self-reduction and solvent-free strategy. Science of the Total Environment, 2022, 824, 153772.	8.0	6
18	Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chemical Engineering Journal, 2022, 439, 135716.	12.7	108

#	Article	IF	CITATIONS
19	Formulation of Water Sustainability Index for India as a performance gauge for realizing the United Nations Sustainable Development Goal 6. Ambio, 2022, 51, 1569-1587.	5.5	7
20	Spectroscopic investigations and density functional theory calculations reveal differences in retention mechanisms of lead and copper on chemically-modified phytolith-rich biochars. Chemosphere, 2022, 301, 134590.	8.2	6
21	Engineered biochar for environmental decontamination in aquatic and soil systems: a review. , 2022, 1, .		93
22	Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, 2022, 308, 119609.	7.5	49
23	Insights into simultaneous adsorption and oxidation of antimonite [Sb(III)] by crawfish shell-derived biochar: spectroscopic investigation and theoretical calculations. Biochar, 2022, 4, .	12.6	15
24	Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2295-2328.	12.8	24
25	SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environmental Research, 2021, 193, 110265.	7. 5	150
26	Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems. Environmental Research, 2021, 193, 110594.	7.5	17
27	Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes. Bioresource Technology, 2021, 323, 124558.	9.6	19
28	Polymers in Wastewater Treatment. , 2021, , .		0
28	Polymers in Wastewater Treatment., 2021,,. Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29, 753-768.	9.1	26
	Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29,	9.1	
29	Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29, 753-768. Synthesis of N-Doped Magnetic WO _{3â€"<i>x</i>} @Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials		26
30	Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29, 753-768. Synthesis of N-Doped Magnetic WO _{3â€"<i>×</i>} @Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Amp; Interfaces, 2021, 13, 13072-13086.	8.0	26
29 30 31	Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29, 753-768. Synthesis of N-Doped Magnetic WO _{3â€"<i>x</i>y} @Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Amp; Interfaces, 2021, 13, 13072-13086. Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. Journal of Environmental Management, 2021, 284, 112023. A critical review on limitations and enhancement strategies associated with biohydrogen production.	8.0 7.8	26 43 35
29 30 31 32	Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29, 753-768. Synthesis of N-Doped Magnetic WO _{3â€"<i>×</i>×} @Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Diatom Template and Plasma Materials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. Journal of Environmental Management, 2021, 284, 112023. A critical review on limitations and enhancement strategies associated with biohydrogen production. International Journal of Hydrogen Energy, 2021, 46, 16565-16590. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical	8.0 7.8 7.1	26 43 35 55
29 30 31 32	Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Reviews in Fisheries Science and Aquaculture, 2021, 29, 753-768. Synthesis of N-Doped Magnetic WO _{3â€"⟨i>x ⟨sub>@Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Diatom Remains and Plasma Modification of polycyclic aromatic hydrocarbons-contaminated soils: A review. Journal of Environmental Management, 2021, 284, 112023. A critical review on limitations and enhancement strategies associated with biohydrogen production. International Journal of Hydrogen Energy, 2021, 46, 16565-16590. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. Environmental Research, 2021, 197, 111091.}	7.8 7.1 7.5	 26 43 35 55 44

#	Article	IF	Citations
37	Green synthesis of reduced graphene oxide-CoFe2O4 nanocomposite as a highly efficient visible-light-driven catalyst in photocatalysis and photo Fenton-like reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115223.	3.5	19
38	Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. Journal of Hazardous Materials, 2021, 416, 125915.	12.4	71
39	GenX is not always a better fluorinated organic compound than PFOA: A critical review on aqueous phase treatability by adsorption and its associated cost. Water Research, 2021, 205, 117683.	11.3	20
40	New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. Environmental Research, 2021, 202, 111693.	7.5	46
41	Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Science of the Total Environment, 2021, 801, 149623.	8.0	61
42	Deciphering functional biomolecule potential of marine diatoms through complex network approach. Bioresource Technology, 2021, 342, 125927.	9.6	2
43	Direct conversion of Camellia japonica seed into biodiesel through non-catalytic transesterification. Industrial Crops and Products, 2021, 174, 114194.	5.2	3
44	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	2.5	35
45	Harnessing biofertilizer from human urine via chemogenic and biogenic routes: Synthesis, characterization and agronomic application. Environmental Technology and Innovation, 2021, 25, 102152.	6.1	1
46	Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. Journal of Hazardous Materials, 2020, 381, 120742.	12.4	191
47	Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies. Journal of Hazardous Materials, 2020, 384, 121320.	12.4	126
48	Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: Co-transport of metals and colloids. Journal of Hazardous Materials, 2020, 383, 121243.	12.4	75
49	Synthesis of clay-cellulose biocomposite for the removal of toxic metal ions from aqueous medium. Journal of Hazardous Materials, 2020, 381, 120871.	12.4	62
50	Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment. Journal of Hazardous Materials, 2020, 383, 121125.	12.4	132
51	Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 2020, 382, 121070.	12.4	273
52	Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Environmental Science and Pollution Research, 2020, 27, 7318-7327.	5.3	52
53	Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites. Bioresource Technology, 2020, 297, 122472.	9.6	64
54	Enhanced interlayer trapping of Pb(II) ions within kaolinite layers: intercalation, characterization, and sorption studies. Environmental Science and Pollution Research, 2020, 27, 1870-1887.	5.3	32

#	Article	IF	Citations
55	Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109582.	16.4	212
56	Photocatalytic degradation of antibiotic and hydrogen production using diatom-templated 3D WO3-x@mesoporous carbon nanohybrid under visible light irradiation. Journal of Cleaner Production, 2020, 275, 124157.	9.3	27
57	Performance evaluation of different harvesting methods and cultivation media on the harvesting efficiency of microalga and their fatty acids profile. Fuel, 2020, 280, 118592.	6.4	10
58	Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Science of the Total Environment, 2020, 745, 140789.	8.0	58
59	Advances in algal biochar: Production, characterization and applications. Bioresource Technology, 2020, 317, 123982.	9.6	15
60	Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water (Switzerland), 2020, 12, 3561.	2.7	124
61	Sustainable nitrogen-doped functionalized graphene nanosheets for visible-light-induced photocatalytic water splitting. Chemical Communications, 2020, 56, 6953-6956.	4.1	49
62	Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. Science of the Total Environment, 2020, 737, 139718.	8.0	47
63	Valorization of plastics and paper mill sludge into carbon composite and its catalytic performance for acarbon material consisted of the multi-layerzo dye oxidation. Journal of Hazardous Materials, 2020, 398, 123173.	12.4	16
64	Adsorption of As(V) and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis of orange peel and red mud. Environmental Research, 2020, 188, 109809.	7.5	59
65	Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environmental Science and Pollution Research, 2020, 27, 32980-32997.	5.3	74
66	A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. Journal of Hazardous Materials, 2020, 400, 123242.	12.4	149
67	Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research, 2020, 27, 32874-32887.	5.3	90
68	Platinum Group Elements in Geosphere and Anthroposphere: Interplay among the Global Reserves, Urban Ores, Markets and Circular Economy. Minerals (Basel, Switzerland), 2020, 10, 558.	2.0	16
69	Environmentally superior cleaning of diatom frustules using sono-Fenton process: Facile fabrication of nanoporous silica with homogeneous morphology and controlled size. Ultrasonics Sonochemistry, 2020, 64, 105044.	8.2	25
70	Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. Bioresource Technology, 2020, 304, 122993.	9.6	63
71	Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environmental Technology and Innovation, 2020, 19, 100847.	6.1	74
72	Carbon nano-onions from waste oil for application in energy storage devices. New Journal of Chemistry, 2020, 44, 7369-7375.	2.8	57

#	Article	IF	Citations
73	An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicology and Environmental Safety, 2020, 197, 110587.	6.0	56
74	Application of Nordic microalgal-bacterial consortia for nutrient removal from wastewater. Chemical Engineering Journal, 2020, 398, 125567.	12.7	22
75	Physicochemical Properties of Pyrogenic Carbonaceous Product, Biochar, Syngenetically Modified for Its Use in Adsorption Systems. Journal of Environmental Engineering, ASCE, 2020, 146, 04020078.	1.4	5
76	A review on carbon-based materials for heterogeneous sonocatalysis: Fundamentals, properties and applications. Ultrasonics Sonochemistry, 2019, 58, 104681.	8.2	86
77	Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. Journal of Cleaner Production, 2019, 235, 875-886.	9.3	108
78	Biomass-derived Carbon Quantum Dots for Visible-Light-Induced Photocatalysis and Label-Free Detection of Fe(III) and Ascorbic acid. Scientific Reports, 2019, 9, 15084.	3.3	161
79	Hexavalent chromium removal from water by microalgal-based materials: Adsorption, desorption and recovery studies. Bioresource Technology, 2019, 293, 122064.	9.6	111
80	Biosorption of Methylene Blue Dye onto Three Different Marine Macroalgae: Effects of Different Parameters on Isotherm, Kinetic and Thermodynamic. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2743-2754.	1.5	12
81	Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. International Journal of Biological Macromolecules, 2019, 128, 391-400.	7. 5	84
82	Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. International Journal of Phytoremediation, 2019, 21, 92-100.	3.1	22
83	A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. International Journal of Biological Macromolecules, 2019, 137, 948-959.	7.5	120
84	Performance evaluation of isolated electrogenic microalga coupled with graphene oxide for decolorization of textile dye wastewater and subsequent lipid production. Chemical Engineering Journal, 2019, 375, 121950.	12.7	34
85	Mechanistic insight into efficient removal of tetracycline from water by Fe/graphene. Chemical Engineering Journal, 2019, 373, 821-830.	12.7	78
86	Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal. Journal of Hazardous Materials, 2019, 374, 372-381.	12.4	34
87	Facile functionalization of cellulose from discarded cigarette butts for the removal of diclofenac from water. Carbohydrate Polymers, 2019, 219, 46-55.	10.2	42
88	Biochar-based engineered composites for sorptive decontamination of water: A review. Chemical Engineering Journal, 2019, 372, 536-550.	12.7	264
89	Chitosan-Fe-Al-Mn metal oxyhydroxides composite as highly efficient fluoride scavenger for aqueous medium. Carbohydrate Polymers, 2019, 216, 140-148.	10.2	51
90	A comparative study for the removal of imidacloprid insecticide from water by chemical-less UVC, UVC/TiO2 and UVC/ZnO processes. Journal of Environmental Health Science & Engineering, 2019, 17, 337-351.	3.0	30

#	Article	IF	CITATIONS
91	Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: A review. Chemical Engineering Journal, 2019, 360, 912-928.	12.7	85
92	Iron Oxide Nanomaterials for Water Purification. , 2019, , 431-446.		18
93	Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Bioresource Technology, 2019, 273, 556-564.	9.6	148
94	FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environmental Technology and Innovation, 2019, 13, 364-372.	6.1	37
95	One-time cultivation of Chlorella pyrenoidosa in aqueous dye solution supplemented with biochar for microalgal growth, dye decolorization and lipid production. Chemical Engineering Journal, 2019, 364, 552-561.	12.7	43
96	CHEMICAL REGENERATION OF BONE CHAR ASSOCIATED WITH A CONTINUOUS SYSTEM FOR DEFLUORIDATION OF WATER. Brazilian Journal of Chemical Engineering, 2019, 36, 1631-1643.	1.3	17
97	Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. Journal of Environmental Chemical Engineering, 2018, 6, 1848-1854.	6.7	29
98	Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Bioresource Technology, 2018, 255, 104-110.	9.6	95
99	Probabilistic risk assessment of exposure to fluoride in most consumed brands of tea in the Middle East. Food and Chemical Toxicology, 2018, 115, 267-272.	3.6	43
100	Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environmental Technology (United) Tj ETQq0 0 0) n g.B T/O∨	er‱k 10 Tf
101	Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite. Environmental Technology (United) Tj ETQq $1\ 1\ 0$.	7 84 814 r _s	gBII2/Overlo
102	Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution. Journal of Magnetism and Magnetic Materials, 2018, 448, 165-171.	2.3	45
103	Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. International Journal of Biological Macromolecules, 2018, 106, 1-10.	7.5	112
104	Trace analysis of nitrite ions in environmental samples by using in-situ synthesized Zein biopolymeric nanoparticles as the novel green solid phase extractor. Talanta, 2018, 176, 156-164.	5. 5	19
105	Blood Flow in a Radially Non Symmetric Stenosed Artery Under Slip Effect Through Porous Medium. The National Academy of Sciences, India, 2018, 41, 349-353.	1.3	0
106	Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants. International Journal of Biological Macromolecules, 2018, 120, 1752-1759.	7.5	94
107	Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Scientific Reports, 2018, 8, 15531.	3.3	104
108	Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants. Journal of Environmental Management, 2018, 227, 95-106.	7.8	53

#	Article	IF	Citations
109	Removal of Cd2+, Ni2+ and PO43â^' from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite. International Journal of Biological Macromolecules, 2018, 118, 903-912.	7.5	63
110	Electrospun polyurethane and soy protein nanofibres for wound dressing applications. IET Nanobiotechnology, 2018, 12, 94-98.	3.8	18
111	Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater. Environmental Pollution, 2018, 242, 1988-1997.	7. 5	61
112	Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. Bioresource Technology, 2018, 268, 523-530.	9.6	140
113	Synthesis, Characterization and Environmental Applications of a New Bio-Composite Gelatin-Zr(IV) Phosphate. Journal of Polymers and the Environment, 2018, 26, 1415-1424.	5.0	17
114	Leaching characteristics of the fine fraction from an excavated landfill: physico-chemical characterization. Journal of Material Cycles and Waste Management, 2017, 19, 294-304.	3.0	30
115	Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. International Journal of Environmental Science and Technology, 2017, 14, 331-340.	3.5	43
116	Synthesis, characterization and exploitation of nano-TiO 2 /feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chemical Engineering Journal, 2017, 316, 370-382.	12.7	55
117	Removal of nitrate from aqueous solution using modified granular activated carbon. Journal of Molecular Liquids, 2017, 233, 139-148.	4.9	88
118	Efficient removal of coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Chemical Engineering Research and Design, 2017, 109, 301-310.	5 . 6	183
119	A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. Journal of Molecular Liquids, 2017, 240, 179-188.	4.9	116
120	Optimization of fluoride removal from aqueous solution by Al 2 O 3 nanoparticles. Journal of Molecular Liquids, 2017, 238, 254-262.	4.9	49
121	Magnesium oxide nanocubes deposited on an overhead projector sheet: synthesis and resistivity-based hydrogen sensing capability. Mikrochimica Acta, 2017, 184, 3349-3355.	5.0	10
122	A non-enzymatic sensor for hydrogen peroxide based on the use of \hat{l}_{\pm} -Fe2O3 nanoparticles deposited on the surface of NiO nanosheets. Mikrochimica Acta, 2017, 184, 3223-3229.	5.0	43
123	A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 2017, 33, 572-588.	1.6	52
124	Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia. Waste Management and Research, 2017, 35, 627-635.	3.9	39
125	Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton. International Journal of Biological Macromolecules, 2017, 102, 248-257.	7.5	49
126	Magnetic SiO 2 @CoFe 2 O 4 nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water. Chemical Engineering Journal, 2017, 322, 472-487.	12.7	96

#	Article	IF	Citations
127	Desorption of Methylene blue dye from brown macroalga: Effects of operating parameters, isotherm study and kinetic modeling. Journal of Cleaner Production, 2017, 152, 443-453.	9.3	294
128	Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles. Scientific Reports, 2017, 7, 14107.	3.3	53
129	Fractionation of Pb and Cu in the fine fraction (<10 mm) of waste excavated from a municipal landfill. Waste Management and Research, 2017, 35, 1175-1182.	3.9	5
130	Chemoresistive sensor for hydrogen using thin films of tin dioxide doped with cerium and palladium. Mikrochimica Acta, 2017, 184, 4765-4773.	5.0	14
131	Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere, 2017, 168, 885-902.	8.2	368
132	A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. International Biodeterioration and Biodegradation, 2017, 119, 565-576.	3.9	31
133	Thermal regeneration process of bone char used in the fluoride removal from aqueous solution. Journal of Cleaner Production, 2017, 142, 3558-3570.	9.3	56
134	Investigation on the performance of sugarcane bagasse as a new carbon source in two hydraulic dimensions of denitrification beds. Journal of Cleaner Production, 2017, 140, 1176-1181.	9.3	22
135	A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae – Effect of pretreatment. Chemical Engineering Journal, 2017, 307, 435-446.	12.7	85
136	Removal of natural organic matter (NOM) and its constituents from water by adsorption $\hat{a} \in A$ review. Chemosphere, 2017, 166, 497-510.	8.2	246
137	Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization. Resources, Conservation and Recycling, 2017, 123, 73-84.	10.8	73
138	Chitin Adsorbents for Toxic Metals: A Review. International Journal of Molecular Sciences, 2017, 18, 114.	4.1	129
139	Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 2016, 95, 101-111.	3.6	184
140	Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. Journal of Environmental Chemical Engineering, 2016, 4, 2647-2655.	6.7	116
141	Synthesis and characterization of Al2O3 nanoparticles by flame spray pyrolysis (FSP) — Role of Fe ions in the precursor. Powder Technology, 2016, 298, 42-49.	4.2	30
142	Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 2016, 306, 1116-1137.	12.7	1,004
143	Equilibrium and Kinetic Studies of Trihalomethanes Adsorption onto Multi-walled Carbon Nanotubes. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	23
144	Adsorption of rare earth metals: A review of recent literature. Journal of Molecular Liquids, 2016, 221, 954-962.	4.9	307

#	Article	IF	Citations
145	Mobility of Metals and Valorization of Sorted Fine Fraction of Waste After Landfill Excavation. Waste and Biomass Valorization, 2016, 7, 593-602.	3.4	33
146	Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. Journal of Molecular Liquids, 2016, 214, 149-156.	4.9	107
147	Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chemical Engineering Journal, 2016, 288, 198-206.	12.7	70
148	Multidisciplinary Approaches to Handling Wastes in Sugar Industries. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	47
149	Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. Journal of Molecular Liquids, 2016, 215, 671-679.	4.9	378
150	A comparative study for the removal of aniline from aqueous solutions using modified bentonite and activated carbon. Desalination and Water Treatment, 2016, 57, 24430-24443.	1.0	26
151	A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 2016, 91, 156-173.	11.3	795
152	Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 2016, 283, 445-452.	12.7	207
153	Treatment of wood leachate with high polyphenols content by peat and carbon-containing fly ash filters. Desalination and Water Treatment, 2015, 54, (v) - (v) .	1.0	0
	Thereis. Desamination and vivater freatment, 2013, 34, (v) (v).		
154	NOM Removal by Adsorption. , 2015, , 213-238.		5
154 155		12.7	5
	NOM Removal by Adsorption. , 2015, , 213-238. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering	12.7	
155	NOM Removal by Adsorption. , 2015, , 213-238. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 2015, 270, 244-271. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent.		582
155 156	NOM Removal by Adsorption. , 2015, , 213-238. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 2015, 270, 244-271. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of Molecular Liquids, 2015, 211, 448-456. Performance evaluation of the main units of a refinery wastewater treatment plant – A case study.	4.9	582 97
155 156 157	NOM Removal by Adsorption., 2015, , 213-238. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 2015, 270, 244-271. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of Molecular Liquids, 2015, 211, 448-456. Performance evaluation of the main units of a refinery wastewater treatment plant – A case study. Journal of Environmental Chemical Engineering, 2015, 3, 2095-2103. Advances in biosorption of microelements – the starting point for the production of new	4.9 6.7	582 97 16
155 156 157	NOM Removal by Adsorption. , 2015, , 213-238. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 2015, 270, 244-271. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of Molecular Liquids, 2015, 211, 448-456. Performance evaluation of the main units of a refinery wastewater treatment plant – A case study. Journal of Environmental Chemical Engineering, 2015, 3, 2095-2103. Advances in biosorption of microelements – the starting point for the production of new agrochemicals. Reviews in Inorganic Chemistry, 2015, 35, 115-133. Biosorption of copper(II) ions by flax meal: Empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation. Ecological Engineering,	4.9 6.7 4.1	582 97 16 21
155 156 157 158	NOM Removal by Adsorption. , 2015, , 213-238. Agricultural waste peels as versatile biomass for water purification â€" A review. Chemical Engineering Journal, 2015, 270, 244-271. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. Journal of Molecular Liquids, 2015, 211, 448-456. Performance evaluation of the main units of a refinery wastewater treatment plant â€" A case study. Journal of Environmental Chemical Engineering, 2015, 3, 2095-2103. Advances in biosorption of microelements â€" the starting point for the production of new agrochemicals. Reviews in Inorganic Chemistry, 2015, 35, 115-133. Biosorption of copper(II) ions by flax meal: Empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation. Ecological Engineering, 2015, 83, 364-379. Recent developments of electro-oxidation in water treatment â€" A review. Journal of	4.9 6.7 4.1 3.6	582 97 16 21

#	Article	IF	Citations
163	Field-portable X-ray fluorescence spectrometry as rapid measurement tool for landfill mining operations: comparison of field data vs. laboratory analysis. International Journal of Environmental Analytical Chemistry, 2015, 95, 609-617.	3.3	13
164	Supported iron-based catalysts under influence of static magnetic field for the removal of TBP and EDTA. Desalination and Water Treatment, 2015, 54, 2700-2709.	1.0	0
165	Application of response surface methodology for the biosorption of Acid Blue 25 dye using raw and HCl-treated macroalgae. Desalination and Water Treatment, 2015, 53, 1710-1723.	1.0	7
166	Significance of environmental dredging on metal mobility from contaminated sediments in the Oskarshamn Harbor, Sweden. Chemosphere, 2015, 119, 445-451.	8.2	40
167	Treatment of wood leachate with high polyphenols content by peat and carbon-containing fly ash filters. Desalination and Water Treatment, 2015, 53, 2041-2048.	1.0	2
168	Analysis of flow characteristics through an artery with time dependent overlapping stenosis. , 2014, , .		2
169	Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environmental Technology (United Kingdom), 2014, 35, 2334-2346.	2.2	26
170	Natural Organic Matter Removal from Drinking Water by Membrane Technology. Separation and Purification Reviews, 2014, 43, 1-61.	5.5	97
171	Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environmental Science and Pollution Research, 2014, 21, 2455-2464.	5.3	45
172	Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Science of the Total Environment, 2014, 476-477, 415-433.	8.0	91
173	Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control—a review. Environmental Science and Pollution Research, 2014, 21, 268-298.	5.3	80
174	Interaction of inorganic anions with iron-mineral adsorbents in aqueous media $\hat{a} \in \text{``}$ A review. Advances in Colloid and Interface Science, 2014, 203, 11-21.	14.7	81
175	Shrimp shell as an efficient bioadsorbent for Acid Blue 25 dye removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2926-2934.	5.3	57
176	Solubility of chromate in a hydrated OPC. Applied Geochemistry, 2014, 48, 132-140.	3.0	24
177	Interaction of anionic pollutants with Al-based adsorbents in aqueous media – A review. Chemical Engineering Journal, 2014, 241, 443-456.	12.7	99
178	Electrochemical methods for the removal of anionic contaminants from water – A review. Separation and Purification Technology, 2014, 132, 252-271.	7.9	145
179	Biosorption and bioaccumulation studies of acid Orange 7 dye by <i>Ceratophylum demersum</i> Environmental Progress and Sustainable Energy, 2013, 32, 285-293.	2.3	12
180	Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Research, 2013, 47, 4812-4832.	11.3	195

#	Article	IF	Citations
181	Optimization of malachite green biosorption by green microalgae—Scenedesmus quadricauda and Chlorella vulgaris: Application of response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 291-294.	5.3	30
182	An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 2013, 219, 499-511.	12.7	839
183	Biological treatment by activated sludge of petroleum refinery wastewaters. Desalination and Water Treatment, 2013, 51, 6641-6654.	1.0	22
184	Biosorption of hexavalent chromium from aqueous solution by six brown macroalgae. Desalination and Water Treatment, 2013, 51, 6021-6030.	1.0	26
185	Sulphide removal from petroleum refinery wastewaters by catalytic oxidation. Desalination and Water Treatment, 2012, 46, 256-263.	1.0	5
186	Sorption Studies of Bromate Removal from Water by Nano–Al ₂ O ₃ . Separation Science and Technology, 2012, 47, 89-95.	2.5	17
187	Ion Exchange Technology: A Promising Approach for Anions Removal from Water. , 2012, , 413-434.		2
188	Insights into trivalent chromium biosorption onto protonated brown algae Pelvetia canaliculata: Distribution of chromium ionic species on the binding sites. Chemical Engineering Journal, 2012, 200-202, 140-148.	12.7	35
189	Valorisation of marine Pelvetia canaliculata Ochrophyta for separation and recovery of nickel from water: Equilibrium and kinetics modeling on Na-loaded algae. Chemical Engineering Journal, 2012, 200-202, 365-372.	12.7	16
190	Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal, 2012, 179, 158-168.	12.7	121
191	Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chemical Engineering Journal, 2012, 180, 159-169.	12.7	58
192	Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chemical Engineering Journal, 2012, 183, 117-123.	12.7	134
193	Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chemical Engineering Journal, 2012, 192, 67-76.	12.7	177
194	Optimization of nickel biosorption by chemically modified brown macroalgae (Pelvetia canaliculata). Chemical Engineering Journal, 2012, 193-194, 256-266.	12.7	49
195	A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environmental Technology (United Kingdom), 2011, 32, 231-249.	2.2	224
196	An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 2011, 83, 1431-1442.	8.2	549
197	A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 2011, 168, 493-504.	12.7	627
198	Fluoride removal from water by adsorption—A review. Chemical Engineering Journal, 2011, 171, 811-840.	12.7	901

#	Article	IF	Citations
199	Defluoridation from aqueous solutions by nano-alumina: Characterization and sorption studies. Journal of Hazardous Materials, 2011, 186, 1042-1049.	12.4	217
200	Heavy metals adsorption by novel EDTA-modified chitosanâ€"silica hybrid materials. Journal of Colloid and Interface Science, 2011, 358, 261-267.	9.4	261
201	Precipitation of dissolved sulphide in pulp and paper mill wastewater by electrocoagulation. Environmental Technology (United Kingdom), 2011, 32, 1393-1400.	2.2	38
202	Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH). Chemical Engineering Journal, 2010, 159, 84-90.	12.7	63
203	Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces, 2010, 76, 544-548.	5.0	140
204	Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions. Journal of Hazardous Materials, 2010, 178, 963-972.	12.4	59
205	Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 2010, 48, 181-186.	3.6	295
206	Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, 2010, 157, 277-296.	12.7	958
207	Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chemical Engineering Journal, 2010, 163, 317-323.	12.7	228
208	Coconut-based biosorbents for water treatment $\hat{a} \in \text{``}$ A review of the recent literature. Advances in Colloid and Interface Science, 2010, 160, 1-15.	14.7	159
209	Influence of weekdays, weekends and bandhas on surface ozone in Kathmandu valley. Atmospheric Research, 2010, 95, 150-156.	4.1	23
210	Assessment of the biosorption characteristics of lychee (<i>Litchi chinensis</i>) peel waste for the removal of Acid Blue 25 dye from water. Environmental Technology (United Kingdom), 2010, 31, 97-105.	2.2	40
211	Performance evaluation of six different aerosol samplers in a particulate matter generation chamber. Atmospheric Environment, 2009, 43, 280-289.	4.1	23
212	Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora. International Journal of Hydrogen Energy, 2009, 34, 9702-9710.	7.1	66
213	Adsorptive removal of 2,4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement. Journal of Hazardous Materials, 2009, 168, 1111-1117.	12.4	52
214	Bromate removal from water by granular ferric hydroxide (GFH). Journal of Hazardous Materials, 2009, 170, 134-140.	12.4	111
215	Utilization of industrial waste for cadmium removal from water and immobilization in cement. Chemical Engineering Journal, 2009, 150, 145-151.	12.7	35
216	Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater â€" A short review. Advances in Colloid and Interface Science, 2009, 152, 26-38.	14.7	591

#	Article	IF	Citations
217	Removal of Anionic Dyes from Water using Citrus limonum (Lemon) Peel: Equilibrium Studies and Kinetic Modeling. Separation Science and Technology, 2009, 44, 316-334.	2.5	59
218	Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research, 2009, 43, 490-498.	11.3	259
219	Effect of COD/SO42â^ratio and Fe(II) under the variable hydraulic retention time (HRT) on fermentative hydrogen production. Water Research, 2009, 43, 3525-3533.	11.3	15
220	Removal of Phenolic Pollutants from Water UtilizingMangifera indica(Mango) Seed Waste and Cement Fixation. Separation Science and Technology, 2009, 44, 3150-3169.	2.5	9
221	Vanadium removal from water by waste metal sludge and cement immobilization. Chemical Engineering Journal, 2008, 144, 197-204.	12.7	80
222	Observation of difference in the size distribution of carbon and major inorganic compounds of atmospheric aerosols after the long-range transport between the selected days of winter and summer. Atmospheric Environment, 2008, 42, 1057-1063.	4.1	4
223	Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon. Separation Science and Technology, 2008, 43, 886-907.	2.5	122
224	Adsorptive Removal of Cobalt from Aqueous Solutions by Utilizing Industrial Waste and its Cement Fixation. Separation Science and Technology, 2007, 42, 1255-1266.	2.5	28
225	Removal of bromophenols from water using industrial wastes as low cost adsorbents. Journal of Hazardous Materials, 2007, 139, 93-102.	12.4	91
226	Immobilization of Arsenate (As5+) Ions in Ordinary Portland Cement: Influence on the Setting Time and Compressive Strength of Cement. Research Journal of Environmental Toxicology, 2007, 1, 45-50.	1.0	5
227	Removal of Lead Ions from Aqueous Solutions by Different Types of Industrial Waste Materials: Equilibrium and Kinetic Studies. Separation Science and Technology, 2006, 41, 1881-1892.	2.5	24
228	Column Studies of Phenols and Dyes Removal from Aqueous Solutions Utilizing Fertilizer Industry Waste. International Journal of Agricultural Research, 2006, 1, 161-168.	0.1	2
229	A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science, 2005, 281, 49-55.	9.4	410
230	Removal of congo red dye from water using carbon slurry waste. Environmental Chemistry Letters, 2005, 2, 199-202.	16.2	46
231	Removal of 2â€fluoro and 2â€iodophenol from aqueous solutions using industrial wastes. Environmental Technology (United Kingdom), 2004, 25, 15-22.	2.2	7
232	Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 2003, 101, 31-42.	12.4	434
233	A Comparative Study of Adsorbents Prepared from Industrial Wastes for Removal of Dyes. Separation Science and Technology, 2003, 38, 463-481.	2.5	374
234	Utilization of Industrial Wastes for the Removal of Anionic Dyes. Toxicological and Environmental Chemistry, 2003, 84, 41-52.	1.2	6

#	Article	IF	CITATIONS
235	Methylphenols Removal from Water by Low-Cost Adsorbents. Journal of Colloid and Interface Science, 2002, 251, 39-45.	9.4	59
236	Degradation of imidacloprid pesticide in aqueous solution using an eco-friendly electrochemical process., 0, 86, 150-157.		5
237	Efficient removal of azo dyes from water with chitosan/carbon nanoflower as a novel nanocomposite synthesized by pyrolysis technique., 0, 142, 308-320.		10
238	New approach for the biodecolorization of Remazol Black-B (RB-B) by Streptomyces hygroscopicus strain PTCC1132., 0, 130, 226-231.		0