John T M Kennis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4101726/publications.pdf

Version: 2024-02-01

80 papers

5,160 citations

94433 37 h-index 70 g-index

82 all docs 82 docs citations

times ranked

82

5181 citing authors

#	Article	IF	CITATIONS
1	Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 2007, 450, 575-578.	27.8	808
2	Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Research, 2009, 101, 105-118.	2.9	590
3	A photoactive carotenoid protein acting as light intensity sensor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12075-12080.	7.1	324
4	Primary Reactions of the LOV2 Domain of Phototropin, a Plant Blue-Light Photoreceptor. Biochemistry, 2003, 42, 3385-3392.	2.5	214
5	An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6017-6022.	7.1	202
6	Unraveling the Carrier Dynamics of BiVO ₄ : A Femtosecond to Microsecond Transient Absorption Study. Journal of Physical Chemistry C, 2014, 118, 27793-27800.	3.1	142
7	Uncovering the hidden ground state of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17988-17993.	7.1	135
8	Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9170-9175.	7.1	132
9	A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5343-5348.	7.1	125
10	Light Harvesting by Carotenoids Incorporated into the B850 Light-Harvesting Complex fromRhodobactersphaeroidesR-26.1:Â Excited-State Relaxation, Ultrafast Triplet Formation, and Energy Transfer to Bacteriochlorophyll. Journal of Physical Chemistry B, 2003, 107, 5642-5649.	2.6	111
11	A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light. Journal of Biological Chemistry, 2012, 287, 40083-40090.	3.4	106
12	Light Harvesting by Chlorophylls and Carotenoids in the Photosystem I Core Complex of Synechococcus elongatus: A A Fluorescence Upconversion Study. Journal of Physical Chemistry B, 2001, 105, 4485-4494.	2.6	102
13	The LOV2 Domain of Phototropin:Â A Reversible Photochromic Switch. Journal of the American Chemical Society, 2004, 126, 4512-4513.	13.7	102
14	Ultrafast spectroscopy of biological photoreceptors. Current Opinion in Structural Biology, 2007, 17, 623-630.	5.7	98
15	Light Harvesting and Photoprotective Functions of Carotenoids in Compact Artificial Photosynthetic Antenna Designs. Journal of Physical Chemistry B, 2004, 108, 414-425.	2.6	86
16	Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. Journal of the American Chemical Society, 2019, 141, 520-530.	13.7	80
17	Primary Reactions of the LOV2 Domain of Phototropin Studied with Ultrafast Mid-Infrared Spectroscopy and Quantum Chemistry. Biophysical Journal, 2009, 97, 227-237.	0.5	79
18	The Role of Key Amino Acids in the Photoactivation Pathway of the <i>Synechocystis</i> Slr1694 BLUF Domain. Biochemistry, 2009, 48, 11458-11469.	2.5	72

#	Article	IF	Citations
19	Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Physical Chemistry Chemical Physics, 2011, 13, 11985.	2.8	70
20	Carotenoid Photoprotection in Artificial Photosynthetic Antennas. Journal of the American Chemical Society, 2011, 133, 7007-7015.	13.7	70
21	The terminal phycobilisome emitter, L _{CM} : A light-harvesting pigment with a phytochrome chromophore. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15880-15885.	7.1	69
22	Energy Transfer, Excited-State Deactivation, and Exciplex Formation in Artificial Caroteno-Phthalocyanine Light-Harvesting Antennasâ€. Journal of Physical Chemistry B, 2007, 111, 6868-6877.	2.6	62
23	Conformational Heterogeneity and Propagation of Structural Changes in the LOV2/Jα Domain from Avena sativa Phototropin 1 as Recorded by Temperature-Dependent FTIR Spectroscopy. Biophysical Journal, 2009, 97, 238-247.	0.5	61
24	Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins. Biophysical Journal, 2011, 101, 934-942.	0.5	58
25	Identification of excited-state energy transfer and relaxation pathways in the peridinin–chlorophyll complex: an ultrafast mid-infrared study. Physical Chemistry Chemical Physics, 2010, 12, 9256.	2.8	54
26	The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 24729-24736.	2.8	54
27	Molecular eyes: proteins that transform light into biological information. Interface Focus, 2013, 3, 20130005.	3.0	52
28	Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 3472-3476.	4.6	52
29	Triplet State Dynamics in Peridinin-Chlorophyll-a-Protein: A New Pathway of Photoprotection in LHCs?. Biophysical Journal, 2007, 93, 2118-2128.	0.5	50
30	FTIR Spectroscopy Revealing Light-Dependent Refolding of the Conserved Tongue Region of Bacteriophytochrome. Journal of Physical Chemistry Letters, 2014, 5, 2512-2515.	4.6	49
31	Reaction dynamics of the chimeric channelrhodopsin C1C2. Scientific Reports, 2017, 7, 7217.	3.3	48
32	Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Physical Chemistry Chemical Physics, 2016, 18, 14619-14628.	2.8	47
33	NeoR, a near-infrared absorbing rhodopsin. Nature Communications, 2020, 11, 5682.	12.8	45
34	Primary Reactions of Bacteriophytochrome Observed with Ultrafast Mid-Infrared Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 3778-3786.	2.5	43
35	\hat{l}^2 -Carotene to Chlorophyll Singlet Energy Transfer in the Photosystem I Core of Synechococcuselong atus Proceeds via the \hat{l}^2 -Carotene S2 and S1S tates. Journal of Physical Chemistry B, 2003, 107, 5995-6002.	2.6	41
36	Femto- to Microsecond Photodynamics of an Unusual Bacteriophytochrome. Journal of Physical Chemistry Letters, 2015, 6, 239-243.	4.6	41

#	Article	IF	Citations
37	Femtosecond Fluorescence Upconversion Studies of Light Harvesting by \hat{l}^2 -Carotene in Oxygenic Photosynthetic Core Proteins. Journal of Physical Chemistry B, 2004, 108, 19029-19035.	2.6	37
38	Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad. Physical Chemistry Chemical Physics, 2013, 15, 4775.	2.8	31
39	Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1788-1792.	4.6	31
40	Wavelength-modulated femtosecond stimulated raman spectroscopyâ€"approach towards automatic data processing. Physical Chemistry Chemical Physics, 2011, 13, 18123.	2.8	29
41	Confinement in crystal lattice alters entire photocycle pathway of the Photoactive Yellow Protein. Nature Communications, 2020, 11 , 4248.	12.8	29
42	Proton-Coupled Electron Transfer Constitutes the Photoactivation Mechanism of the Plant Photoreceptor UVR8. Journal of the American Chemical Society, 2015, 137, 8113-8120.	13.7	28
43	Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains. Physical Chemistry Chemical Physics, 2008, 10, 6693.	2.8	27
44	Photoadduct Formation from the FMN Singlet Excited State in the LOV2 Domain of <i>Chlamydomonas reinhardtii</i> Phototropin. Journal of Physical Chemistry Letters, 2016, 7, 4380-4384.	4.6	23
45	Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. Journal of the American Chemical Society, 2020, 142, 11464-11473.	13.7	23
46	On the role of excitonic interactions in carotenoid–phthalocyanine dyads and implications for photosynthetic regulation. Photosynthesis Research, 2012, 111, 237-243.	2.9	22
47	Photoionization and Electron Radical Recombination Dynamics in Photoactive Yellow Protein Investigated by Ultrafast Spectroscopy in the Visible and Near-Infrared Spectral Region. Journal of Physical Chemistry B, 2013, 117, 11042-11048.	2.6	22
48	Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. Journal of Physical Chemistry Letters, 2018, 9, 6469-6474.	4.6	22
49	Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. Journal of the American Chemical Society, 2020, 142, 17346-17355.	13.7	22
50	Charge separation and energy transfer in a caroteno–C60dyad: photoinduced electron transfer from the carotenoid excited states. Photochemical and Photobiological Sciences, 2006, 5, 1142-1149.	2.9	21
51	New light-harvesting roles of hot and forbidden carotenoid states in artificial photosynthetic constructs. Chemical Science, 2012, 3, 2052.	7.4	21
52	Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes. Scientific Reports, 2015, 5, 12840.	3.3	21
53	Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Scientific Reports, 2016, 6, 37362.	3.3	20
54	The molecular pH-response mechanism of the plant light-stress sensor PsbS. Nature Communications, 2021, 12, 2291.	12.8	20

#	Article	IF	Citations
55	The Primary Photophysics of the <i>Avena sativa</i> Phototropin 1 LOV2 Domain Observed with Timeâ€resolved Emission Spectroscopy ^{â€} . Photochemistry and Photobiology, 2011, 87, 534-541.	2.5	18
56	Proline 68 Enhances Photoisomerization Yield in Photoactive Yellow Protein. Journal of Physical Chemistry B, 2011, 115, 6668-6677.	2.6	17
57	Light-Induced Rearrangement of the \hat{I}^25 Strand in the BLUF Photoreceptor SyPixD (Slr1694). Journal of Physical Chemistry Letters, 2015, 6, 4749-4753.	4.6	17
58	Photoinduced formation of flavin radicals in <scp>BLUF</scp> domains lacking the central glutamine. FEBS Journal, 2015, 282, 3161-3174.	4.7	16
59	Helical Contributions Mediate Light-Activated Conformational Change in the LOV2 Domain of <i>Avena sativa</i> Phototropin 1. ACS Omega, 2019, 4, 1238-1243.	3.5	15
60	Bioinspired energy conversion. Pure and Applied Chemistry, 2005, 77, 1001-1008.	1.9	14
61	Tetrapyrrole Singlet Excited State Quenching by Carotenoids in an Artificial Photosynthetic Antennaâ€. Journal of Physical Chemistry B, 2006, 110, 25411-25420.	2.6	14
62	Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183113.	2.6	14
63	Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment. Chemical Physics Letters, 2012, 544, 94-101.	2.6	13
64	Ultrafast Proton Shuttling in <i>Psammocora</i> Cyan Fluorescent Protein. Journal of Physical Chemistry B, 2013, 117, 11134-11143.	2.6	13
65	Short Hydrogen Bonds and Negative Charge in Photoactive Yellow Protein Promote Fast Isomerization but not High Quantum Yield. Journal of Physical Chemistry B, 2015, 119, 2372-2383.	2.6	10
66	Spectroscopic Analysis of a Biomimetic Model of Tyr _Z Function in PSII. Journal of Physical Chemistry B, 2015, 119, 12156-12163.	2.6	10
67	Polarization-controlled optimal scatter suppression in transient absorption spectroscopy. Scientific Reports, 2017, 7, 43484.	3.3	10
68	The femtosecond-to-second photochemistry of red-shifted fast-closing anion channelrhodopsin <i>Ps</i> ACR1. Physical Chemistry Chemical Physics, 2017, 19, 30402-30409.	2.8	9
69	A Bacterial Pathogen Sees the Light. Science, 2007, 317, 1041-1042.	12.6	8
70	Kinetic isotope effect of proton-coupled electron transfer in a hydrogen bonded phenolâ€"pyrrolidino[60]fullerene. Photochemical and Photobiological Sciences, 2015, 14, 2147-2150.	2.9	7
71	QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors. Physical Chemistry Chemical Physics, 2021, 23, 13934-13950.	2.8	7
72	Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. Journal of Chemical Physics, 2021, 155, 114113.	3.0	7

#	Article	IF	CITATIONS
73	Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Communications Chemistry, 2021, 4, .	4.5	5
74	Editorial: Optogenetic Tools in the Molecular Spotlight. Frontiers in Molecular Biosciences, 2016, 3, 14.	3.5	4
75	Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. Journal of Physical Chemistry B, 2019, 123, 4242-4250.	2.6	4
76	Dual Singlet Excited-State Quenching Mechanisms in an Artificial Caroteno-Phthalocyanine Light Harvesting Antenna. ACS Physical Chemistry Au, 2022, 2, 59-67.	4.0	3
77	Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyes. Advanced Electronic Materials, 2021, 7, 2100186.	5.1	2
78	Synthesis and Photophysics of a Red-Light Absorbing Supramolecular Chromophore System. Chemistry - A European Journal, 2014, 20, 10185-10185.	3.3	0
79	Structural and sequence analyses of an infrared fluorescent tissue marker. FASEB Journal, 2011, 25, 928.1.	0.5	0
80	Structureâ€based engineering of an infrared fluorescent protein marker. FASEB Journal, 2013, 27, 576.4.	0.5	O