MarÃ-a Isabel Navarro-Mendoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4100490/publications.pdf

Version: 2024-02-01

MarÃa Isabel

#	Article	IF	CITATIONS
1	Transformation and CRISPR-Cas9-mediated homologous recombination in the fungus Rhizopus microsporus. STAR Protocols, 2022, 3, 101237.	1.2	2
2	A Mucoralean White Collar-1 Photoreceptor Controls Virulence by Regulating an Intricate Gene Network during Host Interactions. Microorganisms, 2021, 9, 459.	3.6	7
3	The RNAi Mechanism Regulates a New Exonuclease Gene Involved in the Virulence of Mucorales. International Journal of Molecular Sciences, 2021, 22, 2282.	4.1	9
4	Role of the Non-Canonical RNAi Pathway in the Antifungal Resistance and Virulence of Mucorales. Genes, 2021, 12, 586.	2.4	2
5	Stable and reproducible homologous recombination enables CRISPR-based engineering in the fungus Rhizopus microsporus. Cell Reports Methods, 2021, 1, 100124.	2.9	17
6	A non-canonical RNAi pathway controls virulence and genome stability in Mucorales. PLoS Genetics, 2020, 16, e1008611.	3.5	21
7	Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes, 2020, 11, 317.	2.4	42
8	Mucorales Species and Macrophages. Journal of Fungi (Basel, Switzerland), 2020, 6, 94.	3.5	39
9	Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.	3.9	77
10	<i>Mucor circinelloides</i> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway. MBio, 2019, 10, .	4.1	28
11	Understanding <i>Mucor circinelloides</i> pathogenesis by comparative genomics and phenotypical studies. Virulence, 2018, 9, 707-720.	4.4	44
12	<i>Mucor circinelloides</i> : Growth, Maintenance, and Genetic Manipulation. Current Protocols in Microbiology, 2018, 49, e53.	6.5	38
13	Generation of A Mucor circinelloides Reporter Strain—A Promising New Tool to Study Antifungal Drug Efficacy and Mucormycosis. Genes, 2018, 9, 613.	2.4	16
14	An Adult Zebrafish Model Reveals that Mucormycosis Induces Apoptosis of Infected Macrophages. Scientific Reports, 2018, 8, 12802.	3.3	33
15	Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Scientific Reports, 2018, 8, 7660.	3.3	47
16	Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides. Methods in Molecular Biology, 2018, 1852, 221-237.	0.9	28
17	RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathogens, 2017, 13, e1006150.	4.7	53