
Andreas Kappler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environmental Science & Technology, 2010, 44, 15-23.	4.6	1,037
2	The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12, 797-808.	13.6	627
3	Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal, 2014, 8, 660-674.	4.4	484
4	Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nature Geoscience, 2014, 7, 195-200.	5.4	439
5	Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science and Technology Letters, 2014, 1, 339-344.	3.9	432
6	Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience, 2010, 3, 417-421.	5.4	407
7	Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 2005, 33, 865.	2.0	396
8	Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 2017, 8, 1089.	5.8	371
9	Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction. Applied and Environmental Microbiology, 2004, 70, 921-928.	1.4	363
10	Geomicrobiological Cycling of Iron. Reviews in Mineralogy and Geochemistry, 2005, 59, 85-108.	2.2	343
11	Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chemical Reviews, 2018, 118, 3251-3304.	23.0	319
12	Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology, 2004, 47, 85-92.	1.3	313
13	An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology, 2021, 19, 360-374.	13.6	299
14	Shewanella oneidensis MR-1 Uses Overlapping Pathways for Iron Reduction at a Distance and by Direct Contact under Conditions Relevant for Biofilms. Applied and Environmental Microbiology, 2005, 71, 4414-4426.	1.4	292
15	Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria 1 1Associate editor: L. G. Benning. Geochimica Et Cosmochimica Acta, 2004, 68, 1217-1226.	1.6	276
16	Redox Transformation of Arsenic by Fe(II)-Activated Goethite (α-FeOOH). Environmental Science & Technology, 2010, 44, 102-108.	4.6	266
17	Kinetics of Microbial and Chemical Reduction of Humic Substances: Implications for Electron Shuttling. Environmental Science & Technology, 2008, 42, 3563-3569.	4.6	257
18	Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica Et Cosmochimica Acta, 2009, 73, 696-711.	1.6	255

#	Article	IF	CITATIONS
19	Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology, 2005, 3, 235-245.	1.1	250
20	Fe(II) Redox Chemistry in the Environment. Chemical Reviews, 2021, 121, 8161-8233.	23.0	242
21	Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science, 2015, 347, 1473-1476.	6.0	239
22	Formation of Binary and Ternary Colloids and Dissolved Complexes of Organic Matter, Fe and As. Environmental Science & Technology, 2010, 44, 4479-4485.	4.6	238
23	Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth and Planetary Science Letters, 2007, 258, 87-100.	1.8	227
24	Abiotic oxidation of Fe(<scp>II</scp>) by reactive nitrogen species in cultures of the nitrateâ€reducing Fe(<scp>II</scp>) oxidizer <i><scp>A</scp>cidovorax</i> sp. BoFeN1 – questioning the existence of enzymatic Fe(<scp>II</scp>) oxidation. Geobiology, 2013, 11, 180-190.	1.1	224
25	Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 2017, 51, 7326-7339.	4.6	223
26	The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology, 2005, 3, 167-177.	1.1	212
27	IRON IN MICROBIAL METABOLISMS. Elements, 2011, 7, 89-93.	0.5	203
28	Isolation and Characterization of a Genetically Tractable Photoautotrophic Fe(II)-Oxidizing Bacterium, Rhodopseudomonas palustris Strain TIE-1. Applied and Environmental Microbiology, 2005, 71, 4487-4496.	1.4	194
29	Effects of Humic Substances and Quinones at Low Concentrations on Ferrihydrite Reduction by <i>Geobacter metallireducens</i> . Environmental Science & Technology, 2009, 43, 5679-5685.	4.6	180
30	Anaerobic Fe(II)-Oxidizing Bacteria Show As Resistance and Immobilize As during Fe(III) Mineral Precipitation. Environmental Science & Technology, 2010, 44, 94-101.	4.6	180
31	Dissimilatory Reduction and Transformation of Ferrihydrite-Humic Acid Coprecipitates. Environmental Science & Technology, 2013, 47, 13375-13384.	4.6	180
32	Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiology Ecology, 2008, 66, 250-260.	1.3	175
33	Green Rust Formation during Fe(II) Oxidation by the Nitrate-Reducing <i>Acidovorax</i> sp. Strain BoFeN1. Environmental Science & Technology, 2012, 46, 1439-1446.	4.6	173
34	Natural Organic Matter as Reductant for Chlorinated Aliphatic Pollutants. Environmental Science & Technology, 2003, 37, 2714-2719.	4.6	171
35	Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Research, 2009, 172, 163-187.	1.2	170
36	Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica Et Cosmochimica Acta, 2012, 85, 326-341.	1.6	167

#	Article	IF	CITATIONS
37	Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environmental Microbiology, 2018, 20, 3462-3483.	1.8	165
38	Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria. Applied and Environmental Microbiology, 2014, 80, 1051-1061.	1.4	161
39	Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(II)-Oxidizing Bacteria. Geomicrobiology Journal, 2009, 26, 93-103.	1.0	157
40	Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria. Applied and Environmental Microbiology, 2009, 75, 5586-5591.	1.4	152
41	Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiology Ecology, 2009, 70, 335-343.	1.3	152
42	Anaerobic Degradation of 2-Methylnaphthalene by a Sulfate-Reducing Enrichment Culture. Applied and Environmental Microbiology, 2000, 66, 5329-5333.	1.4	140
43	Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids. Geochimica Et Cosmochimica Acta, 2010, 74, 3721-3734.	1.6	139
44	Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite–Organic Matter Coprecipitates. Environmental Science & Technology, 2018, 52, 12316-12326.	4.6	139
45	Alternating Si and Fe deposition caused byÂtemperature fluctuations in PrecambrianÂoceans. Nature Geoscience, 2008, 1, 703-708.	5.4	138
46	Biogeochemistry and Community Composition of Iron- and Sulfur-Precipitating Microbial Mats at the Chefren Mud Volcano (Nile Deep Sea Fan, Eastern Mediterranean). Applied and Environmental Microbiology, 2008, 74, 3198-3215.	1.4	137
47	Influence of Natural Organic Matter on As Transport and Retention. Environmental Science & Technology, 2011, 45, 546-553.	4.6	136
48	Transformation of vivianite by anaerobic nitrateâ€reducing ironâ€oxidizing bacteria. Geobiology, 2009, 7, 373-384.	1.1	133
49	Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochimica Et Cosmochimica Acta, 2011, 75, 2512-2528.	1.6	130
50	Arsenic Redox Changes by Microbially and Chemically Formed Semiquinone Radicals and Hydroquinones in a Humic Substance Model Quinone. Environmental Science & Technology, 2009, 43, 3639-3645.	4.6	129
51	Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE, 2017, 12, e0171214.	1.1	128
52	Rates and Extent of Reduction of Fe(III) Compounds and O ₂ by Humic Substances. Environmental Science & Technology, 2009, 43, 4902-4908.	4.6	123
53	Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri. Applied and Environmental Microbiology, 2015, 81, 2173-2181.	1.4	122
54	Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562, 379-390.	3.9	117

#	Article	IF	CITATIONS
55	Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS. Applied and Environmental Microbiology, 2016, 82, 2656-2668.	1.4	116
56	Organic Carbon and Reducing Conditions Lead to Cadmium Immobilization by Secondary Fe Mineral Formation in a pH-Neutral Soil. Environmental Science & amp; Technology, 2013, 47, 13430-13439.	4.6	114
57	Fate of Cd during Microbial Fe(III) Mineral Reduction by a Novel and Cd-Tolerant <i>Geobacter</i> Species. Environmental Science & Technology, 2013, 47, 14099-14109.	4.6	113
58	Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 2014, 135, 103-121.	4.0	110
59	Pyrite formation from FeS and H ₂ S is mediated through microbial redox activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6897-6902.	3.3	106
60	Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochimica Et Cosmochimica Acta, 2011, 75, 4699-4712.	1.6	99
61	Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Science of the Total Environment, 2018, 613-614, 20-29.	3.9	96
62	Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications, 2020, 11, 6329.	5.8	96
63	Cobalt and marine redox evolution. Earth and Planetary Science Letters, 2014, 390, 253-263.	1.8	95
64	Simulating Precambrian banded iron formation diagenesis. Chemical Geology, 2013, 362, 66-73.	1.4	88
65	Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Environmental Science & Technology, 2016, 50, 2281-2291.	4.6	87
66	Abundance, Distribution, and Activity of Fe(II)-Oxidizing and Fe(III)-Reducing Microorganisms in Hypersaline Sediments of Lake Kasin, Southern Russia. Applied and Environmental Microbiology, 2012, 78, 4386-4399.	1.4	86
67	Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochimica Et Cosmochimica Acta, 2011, 75, 6844-6858.	1.6	85
68	Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 2013, 4, 1741.	5.8	85
69	Electron Transfer from Humic Substances to Biogenic and Abiogenic Fe(III) Oxyhydroxide Minerals. Environmental Science & Technology, 2014, 48, 1656-1664.	4.6	84
70	Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere, 2015, 138, 47-59.	4.2	84
71	Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 2017, 294, 70-79.	2.3	84
72	Water quality deterioration at a karst spring (Gallusquelle, Germany) due to combined sewer overflow: evidence of bacterial and micro-pollutant contamination. Environmental Geology, 2009, 57, 797-808.	1.2	82

#	Article	IF	CITATIONS
73	Linking environmental processes to the <i>in situ</i> functioning of microorganisms by highâ€resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission Xâ€ray microscopy (STXM). Environmental Microbiology, 2012, 14, 2851-2869.	1.8	81
74	Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environmental Toxicology and Chemistry, 2008, 27, 881-887.	2.2	79
75	Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nature Communications, 2015, 6, 6277.	5.8	79
76	Initiation of Anaerobic Degradation of p -Cresol by Formation of 4-Hydroxybenzylsuccinate in Desulfobacterium cetonicum. Journal of Bacteriology, 2001, 183, 752-757.	1.0	78
77	Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Applied Soil Ecology, 1999, 13, 219-229.	2.1	76
78	Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Applied and Environmental Microbiology, 2016, 82, 1433-1447.	1.4	76
79	The distribution of active ironâ€cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environmental Microbiology, 2018, 20, 2483-2499.	1.8	76
80	Anaerobic degradation of m -cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Archives of Microbiology, 1999, 172, 287-294.	1.0	73
81	Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biology and Biochemistry, 2000, 32, 1281-1291.	4.2	73
82	Microbiological processes in banded iron formation deposition. Sedimentology, 2013, 60, 1733-1754.	1.6	73
83	Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. Geochimica Et Cosmochimica Acta, 2010, 74, 2826-2842.	1.6	72
84	Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores. Geochimica Et Cosmochimica Acta, 2016, 180, 66-96.	1.6	72
85	Size, density and composition of cell–mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments. Geochimica Et Cosmochimica Acta, 2010, 74, 3476-3493.	1.6	71
86	Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nature Geoscience, 2020, 13, 799-805.	5.4	71
87	Proton-Binding Capacity of Staphylococcus aureus Wall Teichoic Acid and Its Role in Controlling Autolysin Activity. PLoS ONE, 2012, 7, e41415.	1.1	71
88	Sulfur Species as Redox Partners and Electron Shuttles for Ferrihydrite Reduction by Sulfurospirillum deleyianum. Applied and Environmental Microbiology, 2014, 80, 3141-3149.	1.4	69
89	Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study. Environmental Science & Technology, 2017, 51, 6897-6907.	4.6	69
90	Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nature Geoscience, 2015, 8, 126-130.	5.4	68

#	Article	IF	CITATIONS
91	Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment. Applied and Environmental Microbiology, 2016, 82, 6120-6131.	1.4	68
92	A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 2021, 14, 264-272.	5.4	67
93	Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports, 2016, 6, 39574.	1.6	65
94	Does soil aging affect the N ₂ O mitigation potential of biochar? A combined microcosm and field study. GCB Bioenergy, 2017, 9, 953-964.	2.5	65
95	Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer <i>Rhodovulum iodosum</i> - implications for Precambrian Fe(II) oxidation. FEMS Microbiology Ecology, 2014, 88, 503-515.	1.3	64
96	Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose. BioMetals, 2015, 28, 615-635.	1.8	64
97	Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS. Applied and Environmental Microbiology, 2017, 83, .	1.4	64
98	Primary hematite in Neoarchean to Paleoproterozoic oceans. Bulletin of the Geological Society of America, 2015, 127, 850-861.	1.6	63
99	Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids. Environmental Science & amp; Technology, 2016, 50, 12105-12113.	4.6	62
100	Does a low-pH microenvironment around phototrophic Fell-oxidizing bacteria prevent cell encrustation by FellI minerals?. FEMS Microbiology Ecology, 2010, 74, 592-600.	1.3	61
101	Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy. Applied and Environmental Microbiology, 2013, 79, 6524-6534.	1.4	61
102	Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Science of the Total Environment, 2020, 717, 137143.	3.9	61
103	Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers. Geothermics, 2007, 36, 348-361.	1.5	60
104	Influence of Seasonal and Geochemical Changes on the Geomicrobiology of an Iron Carbonate Mineral Water Spring. Applied and Environmental Microbiology, 2012, 78, 7185-7196.	1.4	60
105	Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology, 2013, 11, 295-306.	1.1	60
106	Fell oxidation by molecular O2 during HCl extraction. Environmental Chemistry, 2011, 8, 190.	0.7	59
107	Evaluation of Electron Microscopic Sample Preparation Methods and Imaging Techniques for Characterization of Cell-Mineral Aggregates. Geomicrobiology Journal, 2008, 25, 228-239.	1.0	58
108	Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth and Planetary Science Letters, 2013, 361, 229-237.	1.8	58

#	Article	IF	CITATIONS
109	Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environmental Microbiology, 2017, 19, 842-846.	1.8	58
110	Role of in Situ Natural Organic Matter in Mobilizing As during Microbial Reduction of Fe ^{III} -Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam). Environmental Science & Technology, 2020, 54, 4149-4159.	4.6	58
111	Mineral precipitation during production of geothermal fluid from a Permian Rotliegend reservoir. Geothermics, 2015, 54, 122-135.	1.5	57
112	Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction. Science of the Total Environment, 2020, 703, 135515.	3.9	57
113	Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments. Geochimica Et Cosmochimica Acta, 2014, 140, 65-79.	1.6	56
114	The Archean Nickel Famine Revisited. Astrobiology, 2015, 15, 804-815.	1.5	55
115	Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation. Scientific Reports, 2017, 7, 3338.	1.6	55
116	Iron Lung: How Rice Roots Induce Iron Redox Changes in the Rhizosphere and Create Niches for Microaerophilic Fe(II)-Oxidizing Bacteria. Environmental Science and Technology Letters, 2019, 6, 600-605.	3.9	55
117	Heterogeneous oxidation of Fe(II) on iron oxides in aqueous systems: Identification and controls of Fe(III) product formation. Geochimica Et Cosmochimica Acta, 2012, 91, 171-186.	1.6	52
118	Iron and Arsenic Speciation and Distribution in Organic Flocs from Streambeds of an Arsenic-Enriched Peatland. Environmental Science & Technology, 2014, 48, 13218-13228.	4.6	52
119	A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Scientific Reports, 2016, 6, 28958.	1.6	51
120	In-Situ Magnetic Susceptibility Measurements As a Tool to Follow Geomicrobiological Transformation of Fe Minerals. Environmental Science & amp; Technology, 2010, 44, 3846-3852.	4.6	50
121	Arsenic removal from drinking water by a household sand filter in Vietnam — Effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 2015, 502, 526-536.	3.9	50
122	Six-Membered Spirocycle Triggered Probe for Visualizing Hg ²⁺ in Living Cells and Bacteria–EPS–Mineral Aggregates. Organic Letters, 2013, 15, 4334-4337.	2.4	49
123	3â€D analysis of bacterial cellâ€(iron)mineral aggregates formed during Fe(<scp>II</scp>) oxidation by the nitrateâ€reducing <i>Acidovorax sp</i> . strain BoFeN1 using complementary microscopy tomography approaches. Geobiology, 2014, 12, 340-361.	1.1	49
124	Photochemistry of iron in aquatic environments. Environmental Sciences: Processes and Impacts, 2020, 22, 12-24.	1.7	49
125	AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales. Environmental Science & Technology, 2020, 54, 4131-4139.	4.6	49
126	Enrichment and Isolation of Ferricâ€ron―and Humicâ€Acidâ€Reducing Bacteria. Methods in Enzymology, 2005, 397, 58-77.	0.4	48

8

#	Article	IF	CITATIONS
127	Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions. Geochimica Et Cosmochimica Acta, 2015, 165, 44-61.	1.6	48
128	Are rice (Oryza sativa L.) phosphate transporters regulated similarly by phosphate and arsenate? A comprehensive study. Plant Molecular Biology, 2014, 85, 301-316.	2.0	47
129	Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biology and Biochemistry, 2002, 34, 221-227.	4.2	46
130	Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers. Frontiers in Microbiology, 2012, 3, 197.	1.5	46
131	Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods. Annual Review of Earth and Planetary Sciences, 2014, 42, 271-289.	4.6	46
132	Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS. Applied and Environmental Microbiology, 2018, 84, .	1.4	46
133	Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biology and Biochemistry, 2018, 119, 143-151.	4.2	46
134	Oxidation of Fe(II)–Organic Matter Complexes in the Presence of the Mixotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacterium <i>Acidovorax</i> sp. BoFeN1. Environmental Science & Technology, 2018, 52, 5753-5763.	4.6	45
135	Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments. Applied and Environmental Microbiology, 2018, 84, .	1.4	45
136	Potential Function of Added Minerals as Nucleation Sites and Effect of Humic Substances on Mineral Formation by the Nitrate-Reducing Fe(II)-Oxidizer <i>Acidovorax</i> sp. BoFeN1. Environmental Science & Technology, 2012, 46, 6556-6565.	4.6	44
137	High spatial resolution of distribution and interconnections between <scp>F</scp> e―and <scp>N</scp> ―edox processes in profundal lake sediments. Environmental Microbiology, 2014, 16, 3287-3303.	1.8	44
138	UV radiation limited the expansion of cyanobacteria in early marine photic environments. Nature Communications, 2018, 9, 3088.	5.8	44
139	Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: A review. Science of the Total Environment, 2022, 803, 149918.	3.9	44
140	Surface binding site analysis of Ca2+-homoionized clay–humic acid complexes. Journal of Colloid and Interface Science, 2010, 352, 526-534.	5.0	43
141	Oxidation of <scp>F</scp> e(<scp>II</scp>)â€ <scp>EDTA</scp> by nitrite and by two nitrateâ€reducing Fe(<scp>II</scp>)â€oxidizing <i><scp>A</scp>cidovorax</i> strains. Geobiology, 2015, 13, 198-207.	1.1	43
142	Recovery of precious metals from waste streams. Microbial Biotechnology, 2017, 10, 1194-1198.	2.0	43
143	Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Science Advances, 2019, 5, eaav2869.	4.7	43
144	Atmospheric hydrogen peroxide and Eoarchean iron formations. Geobiology, 2015, 13, 1-14.	1.1	42

#	Article	IF	CITATIONS
145	Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content. Environmental Microbiology, 2016, 18, 3159-3174.	1.8	42
146	Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks. Applied and Environmental Microbiology, 2017, 83,	1.4	42
147	N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Scientific Reports, 2019, 9, 10691.	1.6	42
148	Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction. Environmental Science & Technology, 2019, 53, 8883-8891.	4.6	42
149	Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Journal of Contaminant Hydrology, 2011, 126, 216-225.	1.6	41
150	Fate of Arsenic during Microbial Reduction of Biogenic versus Abiogenic As–Fe(III)–Mineral Coprecipitates. Environmental Science & Technology, 2013, 47, 130711140829002.	4.6	41
151	The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems. PLoS ONE, 2016, 11, e0165635.	1.1	41
152	Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization. Geochimica Et Cosmochimica Acta, 2019, 260, 192-203.	1.6	40
153	Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation. Environmental Science & Technology, 2019, 53, 8197-8204.	4.6	40
154	Role of Chemodenitrification for N ₂ O Emissions from Nitrate Reduction in Rice Paddy Soils. ACS Earth and Space Chemistry, 2020, 4, 122-132.	1.2	39
155	Effect of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction. Environmental Science & Technology, 2020, 54, 9445-9453.	4.6	39
156	Phototrophic Fe(II) oxidation in an atmosphere of H ₂ : implications for Archean banded iron formations. Geobiology, 2009, 7, 21-24.	1.1	38
157	Low-Temperature Green Synthesis of Multivalent Manganese Oxide Nanowires. ACS Sustainable Chemistry and Engineering, 2013, 1, 1070-1074.	3.2	38
158	Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis. Microbiology (United Kingdom), 2012, 158, 2144-2157.	0.7	37
159	Tillage system affects fertilizer-induced nitrous oxide emissions. Biology and Fertility of Soils, 2017, 53, 49-59.	2.3	37
160	Biogenic Fe(III) Minerals Lower the Efficiency of Iron-Mineral-Based Commercial Filter Systems for Arsenic Removal. Environmental Science & Technology, 2011, 45, 7533-7541.	4.6	36
161	New challenges for tafoni research. A new approach to understand processes and weathering rates. Earth Surface Processes and Landforms, 2011, 36, 839-852.	1.2	36
162	Influence of organics and silica on Fe(II) oxidation rates and cell–mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox – Implications for Fe(II) oxidation in ancient oceans. Earth and Planetary Science Letters, 2016, 443, 81-89.	1.8	36

#	Article	IF	CITATIONS
163	Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by ironâ€oxidizing bacteria. Meteoritics and Planetary Science, 2009, 44, 233-247.	0.7	35
164	Oxidation of <scp>F</scp> e(<scp>II</scp>) leads to increased <scp>C</scp> â€2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium <i><scp>R</scp>hodopseudomonas palustris</i> strain <scp>TIE</scp> â€1. Geobiology, 2013, 11, 268-278.	1.1	35
165	5. Geomicrobiological Cycling of Iron. , 2005, , 85-108.		34
166	Magnetic signature of hydrocarbon-contaminated soils and sediments at the former oil field Häigsen, Germany. Studia Geophysica Et Geodaetica, 2012, 56, 889-908.	0.3	34
167	Arsenic mobility and toxicity in South and South-east Asia – a review on biogeochemistry, health and socio-economic effects, remediation and risk predictions. Environmental Chemistry, 2014, 11, 483.	0.7	34
168	Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles. Scientific Reports, 2016, 6, 30969.	1.6	34
169	Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium <i>Synechococcus</i> PCC 7002. Environmental Science & Technology, 2017, 51, 4897-4906.	4.6	34
170	Long term farming systems affect soils potential for N2O production and reduction processes under denitrifying conditions. Soil Biology and Biochemistry, 2017, 114, 31-41.	4.2	34
171	Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction. Environmental Science & Technology, 2020, 54, 10646-10653.	4.6	34
172	Evaluation of siderite and magnetite formation in BIFs by pressure–temperature experiments of Fe(III) minerals and microbial biomass. Earth and Planetary Science Letters, 2016, 450, 243-253.	1.8	33
173	Synthesis and characterization of specifically 14C-labeled humic model compounds for feeding trials with soil-feeding termites. Soil Biology and Biochemistry, 2000, 32, 1271-1280.	4.2	32
174	Ecosystem functioning from a geomicrobiological perspective – a conceptual framework for biogeochemical iron cycling. Environmental Chemistry, 2010, 7, 399.	0.7	32
175	Insights into Carbon Metabolism Provided by Fluorescence <i>In Situ</i> Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2018, 84, .	1.4	32
176	Sterilization impacts on marine sediment—Are we able to inactivate microorganisms in environmental samples?. FEMS Microbiology Ecology, 2018, 94, .	1.3	32
177	Effect of Reduced Sulfur Species on Chemolithoautotrophic Pyrite Oxidation with Nitrate. Geomicrobiology Journal, 2019, 36, 19-29.	1.0	32
178	Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation. Environmental Science & Technology, 2020, 54, 4121-4130.	4.6	32
179	Fungal Nanophase Particles Catalyze Iron Transformation for Oxidative Stress Removal and Iron Acquisition. Current Biology, 2020, 30, 2943-2950.e4.	1.8	32
180	Quantitative High-Resolution Mapping of Phenanthrene Sorption to Black Carbon Particles. Environmental Science & Technology, 2011, 45, 7314-7322.	4.6	31

#	Article	IF	CITATIONS
181	Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 2021, 407, 124398.	6.5	31
182	Magnetite Formation by the Novel Fe(III)-reducing <i>Geothrix fermentans</i> Strain HradG1 Isolated from a Hydrocarbon-Contaminated Sediment with Increased Magnetic Susceptibility. Geomicrobiology Journal, 2013, 30, 863-873.	1.0	30
183	Bacteriohopanoid inventory of Geobacter sulfurreducens and Geobacter metallireducens. Organic Geochemistry, 2013, 58, 107-114.	0.9	30
184	Predominance of Biotic over Abiotic Formation of Halogenated Hydrocarbons in Hypersaline Sediments in Western Australia. Environmental Science & Technology, 2014, 48, 9170-9178.	4.6	30
185	A Revised Iron Extraction Protocol for Environmental Samples Rich in Nitrite and Carbonate. Geomicrobiology Journal, 2018, 35, 23-30.	1.0	29
186	Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. Bulletin of the Geological Society of America, 2018, 130, 941-951.	1.6	28
187	Impact of organic carbon and iron bioavailability on the magnetic susceptibility of soils. Geochimica Et Cosmochimica Acta, 2014, 128, 44-57.	1.6	27
188	Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Frontiers in Earth Science, 2015, 3, .	0.8	27
189	Limited influence of Si on the preservation of Fe mineralâ€encrusted microbial cells during experimental diagenesis. Geobiology, 2016, 14, 276-292.	1.1	27
190	Interactions between magnetite and humic substances: redox reactions and dissolution processes. Geochemical Transactions, 2017, 18, 6.	1.8	27
191	Fe(III) Photoreduction Producing Fe _{aq} ²⁺ in Oxic Freshwater Sediment. Environmental Science & Technology, 2020, 54, 862-869.	4.6	27
192	Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers. Chemosphere, 2005, 60, 1169-1181.	4.2	26
193	Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (Western Junggar, NW China): MA¶ssbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses. Ore Geology Reviews, 2017, 86, 382-403.	1.1	26
194	Potentially bioavailable iron produced through benthic cycling in glaciated Arctic fjords of Svalbard. Nature Communications, 2021, 12, 1349.	5.8	26
195	Meta-omics Reveal <i>Gallionellaceae</i> and <i>Rhodanobacter</i> Species as Interdependent Key Players for Fe(II) Oxidation and Nitrate Reduction in the Autotrophic Enrichment Culture KS. Applied and Environmental Microbiology, 2021, 87, e0049621.	1.4	26
196	Solid-phase characterisation of an effective household sand filter for As, Fe and Mn removal from groundwater in Vietnam. Environmental Chemistry, 2014, 11, 566.	0.7	25
197	Enhancing handwashing frequency and technique of primary caregivers in Harare, Zimbabwe: A cluster-randomized controlled trial using behavioral and microbial outcomes. Social Science and Medicine, 2018, 196, 66-76.	1.8	25
198	Reusable magnetite nanoparticles–biochar composites for the efficient removal of chromate from water. Scientific Reports, 2020, 10, 19007.	1.6	25

#	Article	IF	CITATIONS
199	Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Environmental Sciences: Processes and Impacts, 2020, 22, 1355-1367.	1.7	25
200	Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer. Environmental Science & Technology, 2021, 55, 9876-9884.	4.6	25
201	Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils. Environmental Science & Technology, 2022, 56, 11888-11896.	4.6	25
202	Limited Zn and Ni mobility during simulated iron formation diagenesis. Chemical Geology, 2015, 402, 30-39.	1.4	24
203	Time and temperature dependency of carbon dioxide triggered metal(loid) mobilization in soil. Applied Geochemistry, 2016, 74, 122-137.	1.4	24
204	Iron mineral transformations and their impact on As (im)mobilization at redox interfaces in As-contaminated aquifers. Geochimica Et Cosmochimica Acta, 2021, 296, 189-209.	1.6	24
205	Microbial activity in biogeochemical gradients - new aspects of research. Geobiology, 2005, 3, 229-233.	1.1	23
206	Role of Microorganisms in Banded Iron Formations. , 2010, , 309-324.		23
207	Secondary Mineral Formation During Ferrihydrite Reduction by <i>Shewanella oneidensis</i> MR-1 Depends on Incubation Vessel Orientation and Resulting Gradients of Cells, Fe ²⁺ and Fe Minerals. Geomicrobiology Journal, 2015, 32, 878-889.	1.0	23
208	Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. FEMS Microbiology Ecology, 2017, 93, .	1.3	23
209	Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria. Applied and Environmental Microbiology, 2019, 85, .	1.4	23
210	Fungal–Mineral Interactions Modulating Intrinsic Peroxidase-like Activity of Iron Nanoparticles: Implications for the Biogeochemical Cycles of Nutrient Elements and Attenuation of Contaminants. Environmental Science & Technology, 2022, 56, 672-680.	4.6	23
211	Dynamics in composition and size-class distribution of humic substances in profundal sediments of Lake Constance. Organic Geochemistry, 2001, 32, 3-10.	0.9	22
212	Arsenic Binding to Iron(II) Minerals Produced by An Iron(III)â€Reducing <i>Aeromonas</i> Strain Isolated from Paddy Soil. Environmental Toxicology and Chemistry, 2009, 28, 2255-2262.	2.2	22
213	Ribosomal Tag Pyrosequencing of DNA and RNA Reveals "Rare―Taxa with High Protein Synthesis Potential in the Sediment of a Hypersaline Lake in Western Australia. Geomicrobiology Journal, 2016, 33, 426-440.	1.0	22
214	Formation of green rust and elemental sulfur in an analogue for oxygenated ferro-euxinic transition zones of Precambrian oceans. Geology, 2019, 47, 211-214.	2.0	22
215	Organic Matter Complexation Promotes Fe(II) Oxidation by the Photoautotrophic Fe(II)-Oxidizer <i>Rhodopseudomonas palustris</i> TIE-1. ACS Earth and Space Chemistry, 2019, 3, 531-536.	1.2	22
216	Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 2020, 1, .	2.6	22

#	Article	IF	CITATIONS
217	Arsenic sequestration in pyrite and greigite in the buried peat of As-contaminated aquifers. Geochimica Et Cosmochimica Acta, 2020, 284, 107-119.	1.6	22
218	Carbon and methane cycling in arsenic-contaminated aquifers. Water Research, 2021, 200, 117300.	5.3	22
219	Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. Applied and Environmental Microbiology, 2021, 87, e0046021.	1.4	22
220	Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction. Environmental Science & Technology, 2021, 55, 10821-10831.	4.6	22
221	Metabolic Flexibility and Substrate Preference by the Fe(II)-Oxidizing Purple Non-Sulphur Bacterium <i>Rhodopseudomonas palustris</i> Strain TIE-1. Geomicrobiology Journal, 2014, 31, 835-843.	1.0	21
222	Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition. International Journal of Astrobiology, 2016, 15, 205-217.	0.9	21
223	Imaging Organic–Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria Using Helium Ion Microscopy. Environmental Science and Technology Letters, 2018, 5, 209-213.	3.9	21
224	Diagenetic degradation products of bacteriohopanepolyols produced by Rhodopseudomonas palustris strain TIE-1. Organic Geochemistry, 2014, 68, 31-38.	0.9	20
225	Geomicrobiology and Microbial Geochemistry. Elements, 2015, 11, 389-394.	0.5	20
226	Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica. AMB Express, 2015, 5, 8.	1.4	20
227	Handwashing, but how? Microbial effectiveness of existing handwashing practices in high-density suburbs of Harare, Zimbabwe. American Journal of Infection Control, 2017, 45, 228-233.	1.1	20
228	High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling. Biogeosciences, 2020, 17, 683-698.	1.3	20
229	Molybdenum Bioavailability and Asymbiotic Nitrogen Fixation in Soils are Raised by Iron (Oxyhydr)oxide-Mediated Free Radical Production. Environmental Science & Technology, 2021, 55, 14979-14989.	4.6	20
230	Comparison of Humic Substance- and Fe(III)-Reducing Microbial Communities in Anoxic Aquifers. Geomicrobiology Journal, 2014, 31, 917-928.	1.0	19
231	Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy. Icarus, 2017, 296, 49-58.	1.1	19
232	Fe isotope fractionation during Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum in the presence of Si – Implications for Precambrian iron formation deposition. Geochimica Et Cosmochimica Acta, 2017, 211, 307-321.	1.6	19
233	Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria. FEMS Microbiology Ecology, 2018, 94, .	1.3	19
234	From Plant to Paddy—How Rice Root Iron Plaque Can Affect the Paddy Field Iron Cycling. Soil Systems, 2020, 4, 28.	1.0	19

#	Article	IF	CITATIONS
235	A Novel Enrichment Culture Highlights Core Features of Microbial Networks Contributing to Autotrophic Fe(II) Oxidation Coupled to Nitrate Reduction. Microbial Physiology, 2021, 31, 280-295.	1.1	19
236	A coupled function of biochar as geobattery and geoconductor leads to stimulation of microbial Fe(III) reduction and methanogenesis in a paddy soil enrichment culture. Soil Biology and Biochemistry, 2021, 163, 108446.	4.2	19
237	Effect of Fe-metabolizing bacteria and humic substances on magnetite nanoparticle reactivity towards arsenic and chromium. Journal of Hazardous Materials, 2020, 384, 121450.	6.5	18
238	Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. Science of the Total Environment, 2020, 718, 137294.	3.9	18
239	Application of Single-Particle ICP-MS to Determine the Mass Distribution and Number Concentrations of Environmental Nanoparticles and Colloids. Environmental Science and Technology Letters, 2021, 8, 589-595.	3.9	18
240	<i>Clostridium</i> Species as Metallic Copper-Forming Bacteria in Soil under Reducing Conditions. Geomicrobiology Journal, 2015, 32, 130-139.	1.0	17
241	Role of Iron Sulfide Phases in the Stability of Noncrystalline Tetravalent Uranium in Sediments. Environmental Science & Technology, 2020, 54, 4840-4846.	4.6	17
242	Influence of Physical Perturbation on Fe(II) Supply in Coastal Marine Sediments. Environmental Science & Technology, 2020, 54, 3209-3218.	4.6	17
243	Cryoturbation impacts iron-organic carbon associations along a permafrost soil chronosequence in northern Alaska. Geoderma, 2022, 413, 115738.	2.3	17
244	Seasonal Fluctuations in Iron Cycling in Thawing Permafrost Peatlands. Environmental Science & Technology, 2022, 56, 4620-4631.	4.6	17
245	Microbially enhanced dissolution of <scp>H</scp> g <scp>S</scp> in an acid mine drainage system in the <scp>C</scp> alifornia <scp>C</scp> aast <scp>R</scp> ange. Geobiology, 2014, 12, 20-33.	1.1	16
246	Fate of cobalt and nickel in mackinawite during diagenetic pyrite formation. American Mineralogist, 2019, 104, 917-928.	0.9	16
247	Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. Science of the Total Environment, 2021, 779, 146501.	3.9	16
248	Microbial community mediates hydroxyl radical production in soil slurries by iron redox transformation. Water Research, 2022, 220, 118689.	5.3	16
249	Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification. Environmental Science & Technology, 2015, 49, 11403-11410.	4.6	15
250	How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?. Free Radical Biology and Medicine, 2019, 140, 154-166.	1.3	15
251	Carbon stable isotope patterns of cyclic terpenoids: A comparison of cultured alkaliphilic aerobic methanotrophic bacteria and methane-seep environments. Organic Geochemistry, 2020, 139, 103940.	0.9	15
252	Isotopic Labeling Reveals Microbial Methane Oxidation Coupled to Fe(III) Mineral Reduction in Sediments from an As-Contaminated Aquifer. Environmental Science and Technology Letters, 2021, 8, 832-837.	3.9	15

#	Article	IF	CITATIONS
253	Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars. Astrobiology, 2016, 16, 525-538.	1.5	14
254	Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations. Geochimica Et Cosmochimica Acta, 2019, 265, 386-412.	1.6	14
255	H2-fuelled microbial metabolism in Opalinus Clay. Applied Clay Science, 2019, 174, 69-76.	2.6	14
256	Biochar as electron donor for reduction of N2O by Paracoccus denitrificans. FEMS Microbiology Ecology, 2020, 96, .	1.3	14
257	Presence of Fe(II) and nitrate shapes aquifer-originating communities leading to an autotrophic enrichment dominated by an Fe(II)-oxidizing <i>Gallionellaceae</i> sp. FEMS Microbiology Ecology, 2021, 97, .	1.3	14
258	Immobilizing magnetite onto quartz sand for chromium remediation. Journal of Hazardous Materials, 2020, 400, 123139.	6.5	13
259	德国西å⊷éſ¨è£,隙岩æ⁰¶å«æ°´å±,地下水补给过程ä¸çš"ç¡é,ç›å½'宿. Hydrogeology Journal, 2021	.,29, 115	53 <u>4</u> 8171.
260	â€~Candidatus ferrigenium straubiae' sp. nov., â€~Candidatus ferrigenium bremense' sp. nov., â€~Candidat ferrigenium altingense' sp. nov., are autotrophic Fe(II)-oxidizing bacteria of the family Gallionellaceae. Systematic and Applied Microbiology, 2022, 45, 126306.	tus 1.2	13
261	Effect of hydrocarbon-contaminated fluctuating groundwater on magnetic properties of shallow sediments. Studia Geophysica Et Geodaetica, 2014, 58, 442-460.	0.3	12
262	Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes. Analytica Chimica Acta, 2015, 853, 514-520.	2.6	12
263	Surface reactivity of the anaerobic phototrophic Fe(II)-oxidizing bacterium Rhodovulum iodosum: Implications for trace metal budgets in ancient oceans and banded iron formations. Chemical Geology, 2016, 442, 113-120.	1.4	12
264	Redox-active humics support interspecies syntrophy and shift microbial community. Science China Technological Sciences, 2019, 62, 1695-1702.	2.0	12
265	Magnetite biomineralization in ferruginous waters and early Earth evolution. Earth and Planetary Science Letters, 2020, 549, 116495.	1.8	12
266	Banded Iron Formations. Encyclopedia of Earth Sciences Series, 2011, , 92-103.	0.1	12
267	Oxidation of green rust by anoxygenic phototrophic Fe(II)-oxidising bacteria. Geochemical Perspectives Letters, 0, , 52-57.	1.0	12
268	Microbial corrosion of silicon nitride ceramics by sulphuric acid producing bacteria Acidithiobacillus ferrooxidans. Journal of the European Ceramic Society, 2011, 31, 1177-1185.	2.8	11
269	Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater. Scientific Reports, 2018, 8, 4238.	1.6	11
270	Evolution of (Bioâ€)Geochemical Processes and Diagenetic Alteration of Sediments Along the Tectonic Migration of Ocean Floor in the Shikoku Basin off Japan. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009585.	1.0	11

#	Article	IF	CITATIONS
271	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	2.6	11
272	Arsenic redox transformation by humic substances and Fe minerals. Applied Geochemistry, 2011, 26, S317.	1.4	10
273	Influence of Nutrient Concentrations on MPN Quantification and Enrichment of Nitrate-Reducing Fe(II)-Oxidizing and Fe(III)-Reducing Bacteria from Littoral Freshwater Lake Sediments. Geomicrobiology Journal, 2014, 31, 788-801.	1.0	10
274	The biogeochemical iron cycle and astrobiology. Hyperfine Interactions, 2016, 237, 1.	0.2	10
275	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. Earth-Science Reviews, 2020, 208, 103281.	4.0	10
276	Temperature dependence of nitrate-reducing Fe(II) oxidation by <i>Acidovorax</i> strain BoFeN1 – evaluating the role of enzymatic vs. abiotic Fe(II) oxidation by nitrite. FEMS Microbiology Ecology, 2022, 97, .	1.3	10
277	Powering biological nitrogen removal from the environment by geobatteries. Trends in Biotechnology, 2022, 40, 377-380.	4.9	10
278	Protection of phototrophic iron(II)-oxidizing bacteria from UV irradiation by biogenic iron(III) minerals: Implications for early Archean banded iron formation. Geology, 0, , G37095.1.	2.0	9
279	Trace Element Concentrations in Firewood and Corresponding Stove Ashes. Energy & Fuels, 2019, 33, 2236-2247.	2.5	9
280	Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer. Environmental Pollution, 2021, 281, 117012.	3.7	9
281	Chromium (VI) removal kinetics by magnetite-coated sand: Small-scale flow-through column experiments. Journal of Hazardous Materials, 2021, 415, 125648.	6.5	9
282	Microbial processes during deposition and diagenesis of Banded Iron Formations. Palaontologische Zeitschrift, 2021, 95, 593-610.	0.8	9
283	Halogenated hydrocarbon formation in a moderately acidic salt lake in Western Australia – role of abiotic and biotic processes. Environmental Chemistry, 2015, 12, 406.	0.7	8
284	Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals. Astrobiology, 2016, 16, 301-310.	1.5	8
285	Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland. Isotopes in Environmental and Health Studies, 2016, 52, 75-93.	0.5	8
286	Current and future microbiological strategies to remove As and Cd from drinking water. Microbial Biotechnology, 2017, 10, 1098-1101.	2.0	8
287	Metagenomic- and Cultivation-Based Exploration of Anaerobic Chloroform Biotransformation in Hypersaline Sediments as Natural Source of Chloromethanes. Microorganisms, 2020, 8, 665.	1.6	8
288	Trace element behavior in wood-fueled heat and power stations in terms of an urban mining perspective. Fuel, 2020, 267, 116887.	3.4	8

#	Article	IF	CITATIONS
289	Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics. Biogeosciences, 2020, 17, 4355-4374.	1.3	8
290	Mineral characterization and composition of Fe-rich flocs from wetlands of Iceland: Implications for Fe, C and trace element export. Science of the Total Environment, 2022, 816, 151567.	3.9	8
291	Microbial Fe cycling in a simulated Precambrian ocean environment: Implications for secondary mineral (trans)formation and deposition during BIF genesis. Geochimica Et Cosmochimica Acta, 2022, 331, 165-191.	1.6	8
292	Humic Substances and Extracellular Electron Transfer. , 2013, , 107-128.		7
293	Formation of chloroform and tetrachloroethene by <i>Sinorhizobium meliloti</i> strain 1021. Letters in Applied Microbiology, 2015, 61, 346-353.	1.0	7
294	Draft Genome Sequence of <i>Chlorobium</i> sp. Strain N1, a Marine Fe(II)-Oxidizing Green Sulfur Bacterium. Microbiology Resource Announcements, 2019, 8, .	0.3	7
295	Complexation by cysteine and iron mineral adsorption limit cadmium mobility during metabolic activity of <i>Geobacter sulfurreducens</i> . Environmental Sciences: Processes and Impacts, 2020, 22, 1877-1887.	1.7	7
296	Using Zn and Ni behavior during magnetite precipitation in banded iron formations to determine its biological or abiotic origin. Earth and Planetary Science Letters, 2021, 568, 117052.	1.8	7
297	Phosphate remobilization from banded iron formations during metamorphic mineral transformations. Chemical Geology, 2021, 584, 120489.	1.4	7
298	Utilization and recycling of wood ashes from industrial heat and power plants regarding fertilizer use. Waste Management, 2022, 141, 92-103.	3.7	6
299	Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 2022, 88, AEM0229021.	1.4	6
300	Microbial communities contribute to the elimination of As, Fe, Mn, and NH4+ from groundwater in household sand filters. Science of the Total Environment, 2022, 838, 156496.	3.9	6
301	Degradation of 2-Methylnaphthalene by a Sulfate-Reducing Enrichment Culture of Mesophilic Freshwater Bacteria. Polycyclic Aromatic Compounds, 2003, 23, 207-218.	1.4	5
302	A case study for late Archean and Proterozoic biogeochemical iron―and sulphur cycling in a modern habitat—the Arvadi Spring. Geobiology, 2018, 16, 353-368.	1.1	5
303	Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Applied and Environmental Microbiology, 2018, 84, .	1.4	5
304	Mössbauer Spectroscopy. , 2019, , 314-338.		5
305	Influence of Fe(III) source, light quality, photon flux and presence of oxygen on photoreduction of Fe(III)-organic complexes – Implications for light-influenced coastal freshwater and marine sediments. Science of the Total Environment, 2022, 814, 152767.	3.9	5
306	Natural attenuation of naphthalene and benzene at a former gasworks site. Water Science and Technology: Water Supply, 2007, 7, 145-153.	1.0	4

#	Article	IF	CITATIONS
307	Field- and Lab-Based Potentiometric Titrations of Microbial Mats from the Fairmont Hot Spring, Canada. Geomicrobiology Journal, 2017, 34, 851-863.	1.0	4
308	Genomic Insights into Two Novel Fe(II)-Oxidizing <i>Zetaproteobacteria</i> Isolates Reveal Lifestyle Adaption to Coastal Marine Sediments. Applied and Environmental Microbiology, 2020, 86, .	1.4	4
309	Variation of salinity and nitrogen concentration affects the pentacyclic triterpenoid inventory of the haloalkaliphilic aerobic methanotrophic bacterium Methylotuvimicrobium alcaliphilum. Extremophiles, 2021, 25, 285-299.	0.9	4
310	Towards a standardized protocol for studying chemolithoautotrophic denitrification with pyrite at circumneutral pH. Applied Geochemistry, 2021, 130, 104995.	1.4	4
311	Gypsum whiskers in Messinian evaporites identified by μ-XRD2. Facies, 2011, 57, 249-253.	0.7	3
312	Absence of humic substance reduction by the acidophilic Fe(III)-reducing strain Acidiphilium SJH: implications for its Fe(III) reduction mechanism and for the stimulation of natural organohalogen formation. Biogeochemistry, 2012, 109, 219-231.	1.7	3
313	Metabolic Responses of a Phototrophic Co-Culture Enriched from a Freshwater Sediment on Changing Substrate Availability and its Relevance for Biogeochemical Iron Cycling. Geomicrobiology Journal, 2021, 38, 267-281.	1.0	3
314	Cryopreservation of anoxygenic phototrophic Fe(II)-oxidizing bacteria. Cryobiology, 2010, 61, 158-160.	0.3	2
315	Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. Journal of Visualized Experiments, 2016, , .	0.2	2
316	Growth of microaerophilic Fe(II)â€oxidizing bacteria using Fe(II) produced by Fe(III) photoreduction. Geobiology, 2022, 20, 421-434.	1.1	2
317	Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes. Applied and Environmental Microbiology, 2022, , e0013222.	1.4	2
318	Hydrological Perturbations Facilitated Phyllosphere Denitrification of an Urban Greening Tree. ACS Earth and Space Chemistry, 2022, 6, 1460-1467.	1.2	2
319	Iron isotope fractionation in anoxygenic phototrophic Fe(II) oxidation by Rhodobacter ferrooxidans SW2. Geochimica Et Cosmochimica Acta, 2022, 332, 355-368.	1.6	1
320	Foreword to the Research Front on â€~Arsenic Biogeochemistry and Health'. Environmental Chemistry, 2014, 11, i.	0.7	0
321	Photoferrotrophy. , 2019, , 1-3.		0