Jeffery D Molkentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099547/publications.pdf Version: 2024-02-01

413 papers	61,393 citations	613 124 h-index	230 g-index
430	430	430	51332
all docs	docs citations	times ranked	citing authors

IFFEEDY D MOLKENTIN

#	Article	IF	CITATIONS
1	Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. , 2022, 1, 312-321.		10
2	At the Brink of Human Therapy to Generate New Myocytes in the Adult Injured Heart. Circulation, 2022, 145, 1356-1358.	1.6	0
3	MO289: IL33 Exerts Toxicity in the Heart as Secreted by Renal Inflammation. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	Ο
4	Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nature Communications, 2022, 13, .	5.8	22
5	Impact of circadian time of dosing on cardiomyocyte-autonomous effects of glucocorticoids. Molecular Metabolism, 2022, 62, 101528.	3.0	3
6	A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. Autophagy, 2021, 17, 3124-3139.	4.3	12
7	Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Cardiovascular Research, 2021, 117, 212-223.	1.8	24
8	Interleukin-1α dependent survival of cardiac fibroblasts is associated with StAR/STARD1 expression and improved cardiac remodeling and function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2021, 155, 125-137.	0.9	6
9	Refined CLARITY-Based Tissue Clearing for Three-Dimensional Fibroblast Organization in Healthy and Injured Mouse Hearts. Journal of Visualized Experiments, 2021, , .	0.2	4
10	Cavβ2a TG mice treated with hight fat diet and Lâ€Name is a model for HFpEF. FASEB Journal, 2021, 35, .	0.2	0
11	Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nature Communications, 2021, 12, 3928.	5.8	60
12	Seroprevalence of SARS-CoV-2 infection in Cincinnati Ohio USA from August to December 2020. PLoS ONE, 2021, 16, e0254667.	1.1	4
13	Cardiac Cell Therapy Fails to Rejuvenate the Chronically Scarred Rodent Heart. Circulation, 2021, 144, 328-331.	1.6	10
14	Nanoparticle Delivery of STAT3 Alleviates Pulmonary Hypertension in a Mouse Model of Alveolar Capillary Dysplasia. Circulation, 2021, 144, 539-555.	1.6	25
15	MEF2C repressor variant deregulation leads to cell cycle re-entry and development of heart failure. EBioMedicine, 2020, 51, 102571.	2.7	12
16	A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacological Research, 2020, 151, 104548.	3.1	23
17	A specialized population of Periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21469-21479.	3.3	35
18	Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications, 2020, 11, 4549.	5.8	54

#	Article	IF	CITATIONS
19	Resident macrophages keep mitochondria running in the heart. Cell Research, 2020, 30, 1057-1058.	5.7	3
20	MCUb Induction Protects the Heart From Postischemic Remodeling. Circulation Research, 2020, 127, 379-390.	2.0	36
21	Cardiac Cell Therapy Rejuvenates the Infarcted Rodent Heart via Direct Injection but Not by Vascular Infusion. Circulation, 2020, 141, 1037-1039.	1.6	7
22	Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via <i>O</i> -linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circulation Research, 2020, 126, e80-e96.	2.0	82
23	A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. Journal of Molecular and Cellular Cardiology, 2020, 144, A3-A13.	0.9	47
24	An acute immune response underlies the benefit of cardiac stemÂcell therapy. Nature, 2020, 577, 405-409.	13.7	392
25	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	3.9	17
26	Hippo signaling does it again: arbitrating cardiac fibroblast identity and activation. Genes and Development, 2019, 33, 1457-1459.	2.7	8
27	CARdiac Immunotherapy: T Cells Engineered to Treat the Fibrotic Heart. Molecular Therapy, 2019, 27, 1869-1871.	3.7	17
28	Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Science Advances, 2019, 5, eaaw4597.	4.7	169
29	The EYA3 tyrosine phosphatase activity promotes pulmonary vascular remodeling in pulmonary arterial hypertension. Nature Communications, 2019, 10, 4143.	5.8	24
30	Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. Journal of Biological Chemistry, 2019, 294, 8918-8929.	1.6	19
31	Fondation Leducq Transatlantic Network of Excellence Targeting Mitochondria to Treat Heart Disease. Circulation Research, 2019, 124, 1294-1296.	2.0	4
32	Overlapping and differential functions of ATF6α versus ATF6β in the mouse heart. Scientific Reports, 2019, 9, 2059.	1.6	29
33	Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polymer Chemistry, 2019, 10, 6360-6367.	1.9	16
34	Cardiac-specific deficiency of the mitochondrial calcium uniporter augments fatty acid oxidation and functional reserve. Journal of Molecular and Cellular Cardiology, 2019, 127, 223-231.	0.9	27
35	Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nature Communications, 2019, 10, 76.	5.8	37
36	ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCI Insight, 2019, 4, .	2.3	49

#	Article	IF	CITATIONS
37	Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart. JCI Insight, 2019, 4, e128722.	2.3	62
38	Palmitoylationâ€Dependent Regulation of RhoGTPase Signaling and Cardiac Pathophysiology. FASEB Journal, 2019, 33, 632.1.	0.2	0
39	Gata4-Dependent Differentiation of c-Kit ⁺ –Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart. Circulation, 2018, 138, 1012-1024.	1.6	34
40	Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation, 2018, 138, 1236-1252.	1.6	185
41	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
42	Increasing Tâ€ŧype calcium channel activity by βâ€adrenergic stimulation contributes to βâ€adrenergic regulation of heart rates. Journal of Physiology, 2018, 596, 1137-1151.	1.3	15
43	Defective Flux of Thrombospondin-4 through the Secretory Pathway Impairs Cardiomyocyte Membrane Stability and Causes Cardiomyopathy. Molecular and Cellular Biology, 2018, 38, .	1.1	21
44	Identity of the elusive mitochondrial permeability transition pore: what it might be, what it was, and what it still could be. Current Opinion in Physiology, 2018, 3, 57-62.	0.9	8
45	van Berlo et al. reply. Nature, 2018, 555, E18-E18.	13.7	8
46	Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1–Positive Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2960-2962.	1.6	35
47	Myofibroblast-Specific TGFβ Receptor II Signaling in the Fibrotic Response to Cardiac Myosin Binding Protein C-Induced Cardiomyopathy. Circulation Research, 2018, 123, 1285-1297.	2.0	39
48	Nuclear calcineurin is a sensor for detecting Ca2+ release from the nuclear envelope via IP3R. Journal of Molecular Medicine, 2018, 96, 1239-1249.	1.7	16
49	Undeniable Evidence That the Adult Mammalian Heart Lacks an Endogenous Regenerative Stem Cell. Circulation, 2018, 138, 806-808.	1.6	33
50	Cardiac Fibrosis in Proteotoxic Cardiac Disease is Dependent Upon Myofibroblast TGFâ€Î² Signaling. Journal of the American Heart Association, 2018, 7, e010013.	1.6	37
51	Developmental vascular regression is regulated by a Wnt/ \hat{l}^2 -catenin, MYC, P21 (CDKN1A) pathway that controls cell proliferation and cell death. Development (Cambridge), 2018, 145, .	1.2	26
52	New Myocyte Formation in the Adult Heart. Circulation Research, 2018, 123, 159-176.	2.0	53
53	Genetic Lineage Tracing of Sca-1 ⁺ Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation, 2018, 138, 2931-2939.	1.6	83
54	Genetic Reduction in Left Ventricular Protein Kinase C-α and Adverse Ventricular Remodeling in Human Subjects. Circulation Genomic and Precision Medicine, 2018, 11, e001901.	1.6	10

#	Article	IF	CITATIONS
55	The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight, 2018, 3, .	2.3	60
56	Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. Journal of Clinical Investigation, 2018, 128, 2127-2143.	3.9	442
57	The Elusive Progenitor Cell in Cardiac Regeneration. Circulation Research, 2017, 120, 400-406.	2.0	73
58	Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart. Cardiovascular Research, 2017, 113, 749-759.	1.8	19
59	Redefining the identity of cardiac fibroblasts. Nature Reviews Cardiology, 2017, 14, 484-491.	6.1	392
60	The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature, 2017, 545, 93-97.	13.7	294
61	Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation, 2017, 136, 549-561.	1.6	225
62	Identity Crisis for Regenerative Cardiac cKit + Cells. Circulation Research, 2017, 121, 1130-1132.	2.0	14
63	Spatial Gene Profiling in the Ischemic Heart. Circulation, 2017, 136, 1410-1411.	1.6	1
64	Mitsugumin 29 regulates t-tubule architecture in the failing heart. Scientific Reports, 2017, 7, 5328.	1.6	7
65	Pharmacological and Activated FibroblastÂTargeting of GÎ ² Î ³ -GRK2 AfterÂMyocardial Ischemia Attenuates Heart Failure Progression. Journal of the American College of Cardiology, 2017, 70, 958-971.	1.2	52
66	BEX1 is an RNA-dependent mediator of cardiomyopathy. Nature Communications, 2017, 8, 1875.	5.8	33
67	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
68	An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circulation Research, 2017, 121, 604-616.	2.0	13
69	Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of HeartÂFailure With Reduced Ejection Fraction. JACC Basic To Translational Science, 2017, 2, 669-683.	1.9	8
70	Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. Journal of Clinical Investigation, 2017, 127, 3770-3783.	3.9	603
71	TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE, 2017, 12, e0181945.	1.1	38
72	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	3.9	146

#	Article	IF	CITATIONS
73	Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. ELife, 2017, 6, .	2.8	69
74	Thrombospondin expression in myofibers stabilizes muscle membranes. ELife, 2016, 5, .	2.8	41
75	Nemo-Like Kinase (NLK) Is a Pathological Signaling Effector in the Mouse Heart. PLoS ONE, 2016, 11, e0164897.	1.1	5
76	Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ. PLoS Genetics, 2016, 12, e1006019.	1.5	56
77	RCANs regulate the convergent roles of NFATc1 in bone homeostasis. Scientific Reports, 2016, 6, 38526.	1.6	14
78	Applying Modern Transcriptomics to Interrogate the Human Cardiac Fibroblast. JACC Basic To Translational Science, 2016, 1, 603-605.	1.9	1
79	A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell, 2016, 165, 1147-1159.	13.5	193
80	Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum–mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca ²⁺ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovascular Research, 2016, 112, 491-501.	1.8	40
81	Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). Journal of Molecular and Cellular Cardiology, 2016, 101, 44-49.	0.9	91
82	Thrombospondin 1 protects pancreatic β-cells from lipotoxicity via the PERK–NRF2 pathway. Cell Death and Differentiation, 2016, 23, 1995-2006.	5.0	56
83	Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 2016, 7, 12260.	5.8	638
84	Cyclophilin D regulates necrosis, but not apoptosis, of murine eosinophils. American Journal of Physiology - Renal Physiology, 2016, 310, G609-G617.	1.6	9
85	DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circulation Research, 2016, 119, 249-260.	2.0	53
86	Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice. Human Molecular Genetics, 2016, 25, 1192-1202.	1.4	30
87	Persistent increases in Ca2+ influx through Cav1.2 shortens action potential and causes Ca2+ overload-induced afterdepolarizations and arrhythmias. Basic Research in Cardiology, 2016, 111, 4.	2.5	25
88	Most of the Dust Has Settled. Circulation Research, 2016, 118, 17-19.	2.0	40
89	Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice. Journal of Biological Chemistry, 2016, 291, 9920-9928.	1.6	20
90	Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circulation Research, 2016, 118, 834-841.	2.0	88

#	Article	IF	CITATIONS
91	Deletion of Periostin Protects Against Atherosclerosis in Mice by Altering Inflammation and Extracellular Matrix Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 60-68.	1.1	59
92	Dissection of Thrombospondin-4 Domains Involved in Intracellular Adaptive Endoplasmic Reticulum Stress-Responsive Signaling. Molecular and Cellular Biology, 2016, 36, 2-12.	1.1	25
93	Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65, 1333-1346.	6.1	159
94	TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFκB and Bnip3 Pathways. Scientific Reports, 2015, 5, 16626.	1.6	18
95	Necroptosis Interfaces with MOMP and the MPTP in Mediating Cell Death. PLoS ONE, 2015, 10, e0130520.	1.1	80
96	Exposure to Radiocontrast Agents Induces Pancreatic Inflammation by Activation of Nuclear Factor-κB, Calcium Signaling, and Calcineurin. Gastroenterology, 2015, 149, 753-764.e11.	0.6	45
97	Regulated Necrotic Cell Death. Circulation Research, 2015, 116, 1800-1809.	2.0	116
98	MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nature Communications, 2015, 6, 10084.	5.8	72
99	Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations. Journal of Molecular and Cellular Cardiology, 2015, 87, 204-213.	0.9	43
100	Physiological and Pathological Roles of the Mitochondrial Permeability Transition Pore in the Heart. Cell Metabolism, 2015, 21, 206-214.	7.2	336
101	STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 87, 38-47.	0.9	97
102	The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Reports, 2015, 12, 15-22.	2.9	284
103	Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 114-128.	7.7	107
104	SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. American Journal of Physiology - Cell Physiology, 2015, 308, C699-C709.	2.1	55
105	Sarcolipin overexpression improves muscle energetics and reduces fatigue. Journal of Applied Physiology, 2015, 118, 1050-1058.	1.2	55
106	Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling. Molecular and Cellular Biology, 2015, 35, 2154-2164.	1.1	70
107	Calcineurin Links Mitochondrial Elongation with Energy Metabolism. Cell Metabolism, 2015, 22, 838-850.	7.2	71
108	Na ⁺ Dysregulation Coupled with Ca ²⁺ Entry through NCX1 Promotes Muscular Dystrophy in Mice. Molecular and Cellular Biology, 2014, 34, 1991-2002.	1.1	32

#	Article	IF	CITATIONS
109	Enhanced Ca2+ influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy. Human Molecular Genetics, 2014, 23, 3706-3715.	1.4	52
110	RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Science Signaling, 2014, 7, ra100.	1.6	71
111	Excess SMAD signaling contributes to heart and muscle dysfunction in muscular dystrophy. Human Molecular Genetics, 2014, 23, 6722-6731.	1.4	32
112	An emerging consensus on cardiac regeneration. Nature Medicine, 2014, 20, 1386-1393.	15.2	222
113	Letter by Molkentin Regarding Article, "The Absence of Evidence Is Not Evidence of Absence: The Pitfalls of Cre Knock-Ins in the c-Kit Locus― Circulation Research, 2014, 115, e21-3.	2.0	27
114	Targeting latent TGFÎ ² release in muscular dystrophy. Science Translational Medicine, 2014, 6, 259ra144.	5.8	41
115	Cardiomyocyte-Specific Transforming Growth Factor Î ² Suppression Blocks Neutrophil Infiltration, Augments Multiple Cytoprotective Cascades, and Reduces Early Mortality After Myocardial Infarction. Circulation Research, 2014, 114, 1246-1257.	2.0	81
116	Response to Torella et al. Circulation Research, 2014, 114, e27.	2.0	11
117	Overexpression of the Na ⁺ /K ⁺ ATPase α2 But Not α1 Isoform Attenuates Pathological Cardiac Hypertrophy and Remodeling. Circulation Research, 2014, 114, 249-256.	2.0	61
118	Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. Journal of Molecular and Cellular Cardiology, 2014, 72, 316-325.	0.9	103
119	Myofibroblasts: Trust your heart and let fate decide. Journal of Molecular and Cellular Cardiology, 2014, 70, 9-18.	0.9	273
120	c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014, 509, 337-341.	13.7	723
121	P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Human Molecular Genetics, 2014, 23, 5452-5463.	1.4	49
122	Sumo E2 Enzyme UBC9 Is Required for Efficient Protein Quality Control in Cardiomyocytes. Circulation Research, 2014, 115, 721-729.	2.0	59
123	Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction. Circulation Research, 2014, 115, 567-580.	2.0	101
124	Transforming Growth Factor β–Activated Kinase 1 Signaling Pathway Critically Regulates Myocardial Survival and Remodeling. Circulation, 2014, 130, 2162-2172.	1.6	96
125	Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice. Human Molecular Genetics, 2014, 23, 6903-6915.	1.4	44
126	Identifying the components of the elusive mitochondrial permeability transition pore. Proceedings of the United States of America, 2014, 111, 10396-10397.	3.3	113

#	Article	IF	CITATIONS
127	Repression of Cyclin D1 Expression Is Necessary for the Maintenance of Cell Cycle Exit in Adult Mammalian Cardiomyocytes. Journal of Biological Chemistry, 2014, 289, 18033-18044.	1.6	36
128	Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. Journal of Molecular and Cellular Cardiology, 2013, 65, 108-119.	0.9	105
129	Are Resident c-Kit ⁺ Cardiac Stem Cells Really All That Are Needed to Mend a Broken Heart?. Circulation Research, 2013, 113, 1037-1039.	2.0	46
130	Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology, 2013, 14, 38-48.	16.1	439
131	CaMKII Does It Again. Circulation Research, 2013, 112, 1208-1211.	2.0	6
132	Parsing Good Versus Bad Signaling Pathways in the Heart. Circulation Research, 2013, 113, 16-19.	2.0	44
133	Unrestrained p38 MAPK Activation in <i>Dusp1/4</i> Double-Null Mice Induces Cardiomyopathy. Circulation Research, 2013, 112, 48-56.	2.0	78
134	Thioredoxin 1 Is Essential for Sodium Sulfide–Mediated Cardioprotection in the Setting of Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 744-751.	1.1	54
135	Ablation of Calcineurin Aβ Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	1.6	16
136	Bile Acids Induce Pancreatic Acinar Cell Injury and Pancreatitis by Activating Calcineurin. Journal of Biological Chemistry, 2013, 288, 570-580.	1.6	73
137	Physiologic Functions of Cyclophilin D and the Mitochondrial Permeability Transition Pore. Circulation Journal, 2013, 77, 1111-1122.	0.7	211
138	Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 2013, 123, 37-45.	3.9	380
139	Parsing the Roles of the Transcription Factors GATA-4 and GATA-6 in the Adult Cardiac Hypertrophic Response. PLoS ONE, 2013, 8, e84591.	1.1	30
140	Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. Journal of General Physiology, 2013, 141, i1-i1.	0.9	1
141	Apoptosis Repressor with a CARD Domain (ARC) Restrains Bax-Mediated Pathogenesis in Dystrophic Skeletal Muscle. PLoS ONE, 2013, 8, e82053.	1.1	10
142	Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. ELife, 2013, 2, e00772.	2.8	229
143	A Caveolae-Targeted L-Type Ca ²⁺ Channel Antagonist Inhibits Hypertrophic Signaling Without Reducing Cardiac Contractility. Circulation Research, 2012, 110, 669-674.	2.0	112
144	Constitutively active MEK1 rescues cardiac dysfunction caused by overexpressed GSK-3α during aging and hemodynamic pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H979-H988.	1.5	19

#	Article	IF	CITATIONS
145	Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury. American Journal of Physiology - Renal Physiology, 2012, 302, G898-G905.	1.6	28
146	Interaction Between NFκB and NFAT Coordinates Cardiac Hypertrophy and Pathological Remodeling. Circulation Research, 2012, 110, 1077-1086.	2.0	151
147	Lost in Transgenesis. Circulation Research, 2012, 111, 761-777.	2.0	92
148	Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. Journal of Cell Biology, 2012, 199, 783-798.	2.3	80
149	Is p53 the Long-Sought Molecular Trigger for Cyclophilin D–Regulated Mitochondrial Permeability Transition Pore Formation and Necrosis?. Circulation Research, 2012, 111, 1258-1260.	2.0	32
150	Animal Models of Heart Failure. Circulation Research, 2012, 111, 131-150.	2.0	378
151	Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nature Medicine, 2012, 18, 1575-1579.	15.2	441
152	Tropomyosin Dephosphorylation Results in Compensated Cardiac Hypertrophy. Journal of Biological Chemistry, 2012, 287, 44478-44489.	1.6	20
153	A TRPC6-Dependent Pathway for Myofibroblast Transdifferentiation and Wound Healing InÂVivo. Developmental Cell, 2012, 23, 705-715.	3.1	294
154	Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activates pathological hypertrophy signaling. Journal of Molecular and Cellular Cardiology, 2012, 53, 657-667.	0.9	81
155	Unraveling the secrets of a double life: Contractile versus signaling Ca2+ in a cardiac myocyte. Journal of Molecular and Cellular Cardiology, 2012, 52, 317-322.	0.9	58
156	A Thrombospondin-Dependent Pathway forÂa Protective ER Stress Response. Cell, 2012, 149, 1257-1268.	13.5	178
157	Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10978-10983.	3.3	117
158	Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. Journal of Clinical Investigation, 2012, 122, 280-290.	3.9	145
159	Postnatal Ablation of Foxm1 from Cardiomyocytes Causes Late Onset Cardiac Hypertrophy and Fibrosis without Exacerbating Pressure Overload-Induced Cardiac Remodeling. PLoS ONE, 2012, 7, e48713.	1.1	30
160	Negative Feedback Signaling Enables Leukemic Transformation by Oncogenic Tyrosine Kinases. Blood, 2012, 120, 1352-1352.	0.6	1
161	Placental Growth Factor Regulates Cardiac Adaptation and Hypertrophy Through a Paracrine Mechanism. Circulation Research, 2011, 109, 272-280.	2.0	84
162	Placental Growth Factor as a Protective Paracrine Effector in the Heart. Trends in Cardiovascular Medicine, 2011, 21, 220-224.	2.3	27

#	Article	IF	CITATIONS
163	The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation. Developmental Cell, 2011, 21, 469-478.	3.1	257
164	Protein kinase Cα as a heart failure therapeutic target. Journal of Molecular and Cellular Cardiology, 2011, 51, 474-478.	0.9	72
165	Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2011, 50, 460-470.	0.9	100
166	A murine model of inducible, cardiac-specific deletion of STAT3: Its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2011, 50, 589-597.	0.9	87
167	Magnetic resonance imaging assessment of cardiac dysfunction in δ-sarcoglycan null mice. Neuromuscular Disorders, 2011, 21, 68-73.	0.3	12
168	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	3.9	83
169	Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature, 2011, 474, 511-515.	13.7	244
170	Calcineurin A-β is required for hypertrophy but not matrix expansion in the diabetic kidney. Journal of Cellular and Molecular Medicine, 2011, 15, 414-422.	1.6	18
171	Monophosphothreonyl extracellular signal-regulated kinases 1 and 2 (ERK1/2) are formed endogenously in intact cardiac myocytes and are enzymically active. Cellular Signalling, 2011, 23, 468-477.	1.7	12
172	TRPC Channels As Effectors of Cardiac Hypertrophy. Circulation Research, 2011, 108, 265-272.	2.0	218
173	Conditional Transgenic Expression of Fibroblast Growth Factor 9 in the Adult Mouse Heart Reduces Heart Failure Mortality After Myocardial Infarction. Circulation, 2011, 123, 504-514.	1.6	60
174	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Cell Biology, 2011, 193, 1181-1196.	2.3	74
175	Inhibition of PKCα/β With Ruboxistaurin Antagonizes Heart Failure in Pigs After Myocardial Infarction Injury. Circulation Research, 2011, 109, 1396-1400.	2.0	57
176	Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12331-12336.	3.3	89
177	Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circulation Research, 2011, 108, 176-183.	2.0	217
178	Dysfunctional ryanodine receptor and cardiac hypertrophy: role of signaling molecules. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2187-H2195.	1.5	17
179	Moderate Calcium Channel Dysfunction in Adult Mice with Inducible Cardiomyocyte-specific Excision of the cacnb2 Gene. Journal of Biological Chemistry, 2011, 286, 15875-15882.	1.6	50
180	GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling. Journal of Biological Chemistry, 2011, 286, 5680-5690.	1.6	39

#	Article	IF	CITATIONS
181	FoxO Transcription Factors Promote Cardiomyocyte Survival upon Induction of Oxidative Stress. Journal of Biological Chemistry, 2011, 286, 7468-7478.	1.6	283
182	A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2011, 109, 141-150.	2.0	113
183	Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. Journal of Cell Biology, 2011, 193, 21-29.	2.3	83
184	Mechanisms of necroptosis in T cells. Journal of Experimental Medicine, 2011, 208, 633-641.	4.2	190
185	Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1973-H1982.	1.5	97
186	The Transcription Factor C/EBPβ Serves as a Master Regulator of Physiologic Cardiac Hypertrophy. Circulation Research, 2011, 108, 277-278.	2.0	7
187	Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. Journal of Clinical Investigation, 2011, 121, 1044-1052.	3.9	157
188	DUSP6-Mediated Negative Feedback to Oncogenic Tyrosine Kinase Signaling Prevents Excessive Accumulation of ROS and Enables Leukemia Cell Survival. Blood, 2011, 118, 1479-1479.	0.6	1
189	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Experimental Medicine, 2011, 208, i20-i20.	4.2	0
190	Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts. Transgenic Research, 2010, 19, 715-725.	1.3	60
191	Protein kinase C alpha enhances sodium–calcium exchange during store-operated calcium entry in mouse platelets. Cell Calcium, 2010, 48, 333-340.	1.1	14
192	CIB1 is a regulator of pathological cardiac hypertrophy. Nature Medicine, 2010, 16, 872-879.	15.2	91
193	Extracellular signalâ€regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Annals of the New York Academy of Sciences, 2010, 1188, 96-102.	1.8	109
194	Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure. Circulation, 2010, 121, 419-425.	1.6	207
195	Increasing Cardiac Contractility After Myocardial Infarction Exacerbates Cardiac Injury and Pump Dysfunction. Circulation Research, 2010, 107, 800-809.	2.0	43
196	The Transcription Factor GATA-6 Regulates Pathological Cardiac Hypertrophy. Circulation Research, 2010, 107, 1032-1040.	2.0	88
197	Heart-specific Deletion of CnB1 Reveals Multiple Mechanisms Whereby Calcineurin Regulates Cardiac Growth and Function. Journal of Biological Chemistry, 2010, 285, 6716-6724.	1.6	44
198	The Role of Calcium/Calmodulin-Activated Calcineurin in Rapid and Slow Endocytosis at Central Synapses. Journal of Neuroscience, 2010, 30, 11838-11847.	1.7	94

#	Article	IF	CITATIONS
199	TEAD-1 Overexpression in the Mouse Heart Promotes an Age-dependent Heart Dysfunction. Journal of Biological Chemistry, 2010, 285, 13721-13735.	1.6	45
200	Increased Coupled Gating of L-Type Ca ²⁺ Channels During Hypertension and Timothy Syndrome. Circulation Research, 2010, 106, 748-756.	2.0	134
201	Molecular Pathways Underlying Cardiac Remodeling During Pathophysiological Stimulation. Circulation, 2010, 122, 2727-2735.	1.6	478
202	Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen. Journal of Biological Chemistry, 2010, 285, 23410-23419.	1.6	96
203	TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7000-7005.	3.3	256
204	Apoptotic cell death "Nixed" by an ER-mitochondrial necrotic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9031-9032.	3.3	46
205	Proteasome functional insufficiency activates the calcineurin–NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovascular Research, 2010, 88, 424-433.	1.8	99
206	Elevated Ca ²⁺ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 298, C211-C220.	2.1	80
207	Enhanced basal contractility but reduced excitation-contraction coupling efficiency and β-adrenergic reserve of hearts with increased Cav1.2 activity. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H519-H528.	1.5	25
208	Isoform- and tissue-specific regulation of the Ca ²⁺ -sensitive transcription factor NFAT in cardiac myocytes and heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H2001-H2009.	1.5	31
209	Developing small molecules to inhibit kinases unkind to the heart: p38 MAPK as a case in point. Drug Discovery Today Disease Mechanisms, 2010, 7, e123-e127.	0.8	26
210	Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscular Disorders, 2010, 20, 753-760.	0.3	52
211	Calcineurin protects the heart in a murine model of dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 48, 1080-1087.	0.9	38
212	Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. Journal of Molecular and Cellular Cardiology, 2010, 48, 1146-1156.	0.9	86
213	The IP ₃ Receptor Regulates Cardiac Hypertrophy in Response to Select Stimuli. Circulation Research, 2010, 107, 659-666.	2.0	154
214	Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. Journal of Clinical Investigation, 2010, 120, 3680-3687.	3.9	333
215	Cardiac Myosin Binding Protein-C Phosphorylation in a β-Myosin Heavy Chain Background. Circulation, 2009, 119, 1253-1262.	1.6	81
216	PDK1 coordinates survival pathways and β-adrenergic response in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8689-8694.	3.3	51

#	Article	IF	CITATIONS
217	Helmut Drexler, MD. Circulation, 2009, 120, 2402-2403.	1.6	1
218	Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19023-19028.	3.3	184
219	Estrogen Attenuates Left Ventricular and Cardiomyocyte Hypertrophy by an Estrogen Receptor–Dependent Pathway That Increases Calcineurin Degradation. Circulation Research, 2009, 104, 265-275.	2.0	125
220	Protein Kinase Cα, but Not PKCβ or PKCγ, Regulates Contractility and Heart Failure Susceptibility. Circulation Research, 2009, 105, 194-200.	2.0	127
221	Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiological Genomics, 2009, 39, 160-168.	1.0	82
222	Genetic inhibition of calcineurin induces diastolic dysfunction in mice with chronic pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1814-H1819.	1.5	22
223	ASK1 Regulates Cardiomyocyte Death but Not Hypertrophy in Transgenic Mice. Circulation Research, 2009, 105, 1110-1117.	2.0	72
224	CaMKII Negatively Regulates Calcineurin–NFAT Signaling in Cardiac Myocytes. Circulation Research, 2009, 105, 316-325.	2.0	129
225	Genetic Manipulation of Periostin Expression in the Heart Does Not Affect Myocyte Content, Cell Cycle Activity, or Cardiac Repair. Circulation Research, 2009, 104, e1-7.	2.0	103
226	Rcan1 negatively regulates FcɛRI-mediated signaling and mast cell function. Journal of Experimental Medicine, 2009, 206, 195-207.	4.2	34
227	Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point. Nature Cell Biology, 2009, 11, 154-161.	4.6	127
228	Blockade of Hsp20 Phosphorylation Exacerbates Cardiac Ischemia/Reperfusion Injury by Suppressed Autophagy and Increased Cell Death. Circulation Research, 2009, 105, 1223-1231.	2.0	110
229	The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice. Experimental Neurology, 2009, 218, 333-346.	2.0	159
230	Shigella Induces Mitochondrial Dysfunction and Cell Death in Nonmyleoid Cells. Cell Host and Microbe, 2009, 5, 123-136.	5.1	140
231	With great power comes great responsibility: Using mouse genetics to study cardiac hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 2009, 46, 130-136.	0.9	96
232	Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax. Journal of Molecular and Cellular Cardiology, 2009, 46, 969-977.	0.9	35
233	Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the Serca2 gene. Journal of Molecular and Cellular Cardiology, 2009, 47, 180-187.	0.9	128
234	FoxO Transcription Factors Promote Autophagy in Cardiomyocytes. Journal of Biological Chemistry, 2009, 284, 28319-28331.	1.6	365

#	Article	IF	CITATIONS
235	Genetic Manipulation of Dysferlin Expression in Skeletal Muscle. American Journal of Pathology, 2009, 175, 1817-1823.	1.9	54
236	PKCα regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation, 2009, 119, 399-407.	3.9	136
237	Endoplasmic reticulum–mitochondria crosstalk in NIX-mediated murine cell death. Journal of Clinical Investigation, 2009, 119, 203-12.	3.9	115
238	Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. Journal of Clinical Investigation, 2009, 119, 976-85.	3.9	66
239	Cdc42 is an antihypertrophic molecular switch in the mouse heart. Journal of Clinical Investigation, 2009, 119, 3079-3088.	3.9	58
240	α1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. Journal of Clinical Investigation, 2009, 119, 3787-3796.	3.9	83
241	Rcan1 negatively regulates FceRI-mediated signaling and mast cell function. Journal of Cell Biology, 2009, 184, i2-i2.	2.3	0
242	C1qbp localizes to mitochondria and protects against oxidative stressâ€induced mitochondrial dysfunction and cell death. FASEB Journal, 2009, 23, LB95.	0.2	0
243	Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Molecular Biology, 2008, 9, 13.	3.0	35
244	TGFβâ€mediated BIM expression and apoptosis are regulated through SMAD3â€dependent expression of the MAPK phosphatase MKP2. EMBO Reports, 2008, 9, 990-997.	2.0	79
245	Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nature Medicine, 2008, 14, 1097-1105.	15.2	833
246	Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nature Medicine, 2008, 14, 442-447.	15.2	324
247	Nuclear Dbf2-related protein kinases (NDRs) in isolated cardiac myocytes and the myocardium: Activation by cellular stresses and by phosphoprotein serine-/threonine-phosphatase inhibitors. Cellular Signalling, 2008, 20, 1564-1577.	1.7	8
248	Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C. European Journal of Pharmacology, 2008, 581, 270-275.	1.7	15
249	A Redox-Dependent Pathway for Regulating Class II HDACs and Cardiac Hypertrophy. Cell, 2008, 133, 978-993.	13.5	316
250	Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood, 2008, 111, 1257-1265.	0.6	189
251	Ca ²⁺ Influx Through T- and L-Type Ca ²⁺ Channels Have Different Effects on Myocyte Contractility and Induce Unique Cardiac Phenotypes. Circulation Research, 2008, 103, 1109-1119.	2.0	69
252	Cholecystokinin Activates Pancreatic Calcineurin-NFAT Signaling In Vitro and In Vivo. Molecular Biology of the Cell, 2008, 19, 198-206.	0.9	42

#	Article	IF	CITATIONS
253	Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovascular Research, 2008, 81, 301-309.	1.8	44
254	Conditional <i>Dicer</i> Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling. Circulation, 2008, 118, 1567-1576.	1.6	282
255	The control of Ca ²⁺ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15623-15628.	3.3	94
256	Requirement of Calcineurin Aβ for the Survival of Naive T Cells. Journal of Immunology, 2008, 180, 106-112.	0.4	20
257	Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18930-18935.	3.3	73
258	Periostin as a Heterofunctional Regulator of Cardiac Development and Disease. Current Genomics, 2008, 9, 548-555.	0.7	124
259	Periostin Is Required for Maturation and Extracellular Matrix Stabilization of Noncardiomyocyte Lineages of the Heart. Circulation Research, 2008, 102, 752-760.	2.0	281
260	Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1459-H1466.	1.5	13
261	Does Contractile Ca ²⁺ Control Calcineurin-NFAT Signaling and Pathological Hypertrophy in Cardiac Myocytes?. Science Signaling, 2008, 1, pe31.	1.6	85
262	DUSP6 (MKP3) Null Mice Show Enhanced ERK1/2 Phosphorylation at Baseline and Increased Myocyte Proliferation in the Heart Affecting Disease Susceptibility. Journal of Biological Chemistry, 2008, 283, 31246-31255.	1.6	144
263	Calcineurin Deficiency Decreases Inflammatory Lesions in TGFbeta1â€deficient Mice. FASEB Journal, 2008, 22, 667.21.	0.2	0
264	Genetic Disruption of Calcineurin Improves Skeletal Muscle Pathology and Cardiac Disease in a Mouse Model of Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 2007, 282, 10068-10078.	1.6	33
265	Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14074-14079.	3.3	219
266	Inducible and myocyte-specific inhibition of PKCα enhances cardiac contractility and protects against infarction-induced heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3768-H3771.	1.5	45
267	Activation of NFATc3 Down-regulates the β1 Subunit of Large Conductance, Calcium-activated K+ Channels in Arterial Smooth Muscle and Contributes to Hypertension. Journal of Biological Chemistry, 2007, 282, 3231-3240.	1.6	113
268	Inducible Cardiac-Restricted Expression of Enteroviral Protease 2A Is Sufficient to Induce Dilated Cardiomyopathy. Circulation, 2007, 115, 94-102.	1.6	88
269	Genetic Manipulation of Periostin Expression Reveals a Role in Cardiac Hypertrophy and Ventricular Remodeling. Circulation Research, 2007, 101, 313-321.	2.0	428
270	Cardiac Hypertrophy and Reduced Contractility in Hearts Deficient in the Titin Kinase Region. Circulation, 2007, 115, 743-751.	1.6	57

#	Article	IF	CITATIONS
271	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.2	157
272	Re-employment of developmental transcription factors in adult heart disease. Seminars in Cell and Developmental Biology, 2007, 18, 117-131.	2.3	156
273	Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2007, 292, C1167-C1178.	2.1	82
274	Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6794-6799.	3.3	129
275	Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 2007, 101, 695-711.	1.2	530
276	Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. Journal of Physiology, 2007, 579, 187-201.	1.3	85
277	Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology, 2007, 9, 550-555.	4.6	837
278	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974.	15.2	720
279	Mediating ERK1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. Journal of Clinical Investigation, 2007, 117, 2123-2132.	3.9	100
280	Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. Journal of Clinical Investigation, 2007, 117, 2431-2444.	3.9	359
281	Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. Journal of Clinical Investigation, 2007, 117, 3198-3210.	3.9	212
282	Cardiac Hypertrophy. , 2006, , 146-156.		0
283	Age-Dependent Effect of Myostatin Blockade on Disease Severity in a Murine Model of Limb-Girdle Muscular Dystrophy. American Journal of Pathology, 2006, 168, 1975-1985.	1.9	94
284	Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 2006, 7, 589-600.	16.1	1,680
285	High Glucose Activates Nuclear Factor of Activated T Cells in Native Vascular Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 794-800.	1.1	85
286	Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E755-E760.	1.8	47
287	The Presence of Lys27 Instead of Asn27 in Human Phospholamban Promotes Sarcoplasmic Reticulum Ca 2+ -ATPase Superinhibition and Cardiac Remodeling. Circulation, 2006, 113, 995-1004.	1.6	37
288	Calcineurinâ€dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB Journal, 2006, 20, 1660-1670.	0.2	250

#	Article	IF	CITATIONS
289	GDF15/MIC-1 Functions As a Protective and Antihypertrophic Factor Released From the Myocardium in Association With SMAD Protein Activation. Circulation Research, 2006, 98, 342-350.	2.0	418
290	The Transforming Growth Factor-Î ² Superfamily Member Growth-Differentiation Factor-15 Protects the Heart From Ischemia/Reperfusion Injury. Circulation Research, 2006, 98, 351-360.	2.0	551
291	Direct Interaction and Reciprocal Regulation between ASK1 and Calcineurin-NFAT Control Cardiomyocyte Death and Growth. Molecular and Cellular Biology, 2006, 26, 3785-3797.	1.1	86
292	Mechanisms Underlying Heterogeneous Ca2+ Sparklet Activity in Arterial Smooth Muscle. Journal of General Physiology, 2006, 127, 611-622.	0.9	108
293	A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11189-11194.	3.3	170
294	Cardiac-Specific Deletion of Gata4 Reveals Its Requirement for Hypertrophy, Compensation, and Myocyte Viability. Circulation Research, 2006, 98, 837-845.	2.0	384
295	Pharmacological- and Gene Therapy-Based Inhibition of Protein Kinase Cα/β Enhances Cardiac Contractility and Attenuates Heart Failure. Circulation, 2006, 114, 574-582.	1.6	139
296	The β-Catenin/T-Cell Factor/Lymphocyte Enhancer Factor Signaling Pathway Is Required for Normal and Stress-Induced Cardiac Hypertrophy. Molecular and Cellular Biology, 2006, 26, 4462-4473.	1.1	123
297	Phosphorylation of Protein Phosphatase Inhibitor-1 by Protein Kinase C. Journal of Biological Chemistry, 2006, 281, 24322-24335.	1.6	24
298	Calcineurin Increases Cardiac Transient Outward K+ Currents via Transcriptional Up-regulation of Kv4.2 Channel Subunits. Journal of Biological Chemistry, 2006, 281, 38498-38506.	1.6	41
299	Calcineurin regulates NFAT-dependent iNOS expression and protection of cardiomyocytes: Co-operation with Src tyrosine kinase. Cardiovascular Research, 2006, 71, 672-683.	1.8	43
300	Myocyte Enhancer Factors 2A and 2C Induce Dilated Cardiomyopathy in Transgenic Mice*. Journal of Biological Chemistry, 2006, 281, 9152-9162.	1.6	160
301	Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7327-7332.	3.3	118
302	Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. Journal of Clinical Investigation, 2006, 116, 623-626.	3.9	92
303	CONTRIBUTION OF MKP-1 REGULATION OF p38 TO ENDOTOXIN TOLERANCE. Shock, 2005, 23, 80-87.	1.0	68
304	Locating heart failure. Nature Medicine, 2005, 11, 1284-1285.	15.2	7
305	Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 2005, 434, 658-662.	13.7	2,005
306	Inhibition of p38 reduces myocardial infarction injury in the mouse but not pig after ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2747-H2751.	1.5	29

#	Article	IF	CITATIONS
307	The Dnal-Related Factor Mrj Interacts with Nuclear Factor of Activated T Cells c3 and Mediates Transcriptional Repression through Class II Histone Deacetylase Recruitment. Molecular and Cellular Biology, 2005, 25, 9936-9948.	1.1	100
308	Direct and Indirect Interactions between Calcineurin-NFAT and MEK1-Extracellular Signal-Regulated Kinase 1/2 Signaling Pathways Regulate Cardiac Gene Expression and Cellular Growth. Molecular and Cellular Biology, 2005, 25, 865-878.	1.1	138
309	Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1655-1660.	3.3	143
310	Genetic Inhibition or Activation of JNK1/2 Protects the Myocardium from Ischemia-Reperfusion-induced Cell Death in Vivo. Journal of Biological Chemistry, 2005, 280, 32602-32608.	1.6	105
311	Cardiac-Specific Loss of N-Cadherin Leads to Alteration in Connexins With Conduction Slowing and Arrhythmogenesis. Circulation Research, 2005, 97, 474-481.	2.0	201
312	Induced Deletion of theN-CadherinGene in the Heart Leads to Dissolution of the Intercalated Disc Structure. Circulation Research, 2005, 96, 346-354.	2.0	295
313	Regulation of Calcineurin through Transcriptional Induction of the calcineurin AÎ ² Promoter In Vitro and In Vivo. Molecular and Cellular Biology, 2005, 25, 6649-6659.	1.1	46
314	The Protein Phosphatase Calcineurin Determines Basal Parathyroid Hormone Gene Expression. Molecular Endocrinology, 2005, 19, 516-526.	3.7	44
315	Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+-dependent signaling cascade. Journal of Cell Biology, 2005, 170, 37-47.	2.3	71
316	Identification of a Cooperative Mechanism Involving Interleukin-13 and Eotaxin-2 in Experimental Allergic Lung Inflammation. Journal of Biological Chemistry, 2005, 280, 13952-13961.	1.6	137
317	Temporally Controlled Onset of Dilated Cardiomyopathy Through Disruption of the SRF Gene in Adult Heart. Circulation, 2005, 112, 2930-2939.	1.6	151
318	MEKK1 Transduces Activin Signals in Keratinocytes To Induce Actin Stress Fiber Formation and Migration. Molecular and Cellular Biology, 2005, 25, 60-65.	1.1	103
319	STRESS signaling pathways that modulate cardiac myocyte apoptosis. Journal of Molecular and Cellular Cardiology, 2005, 38, 47-62.	0.9	304
320	Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research, 2004, 94, 110-118.	2.0	660
321	Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 2004, 167, 351-363.	2.3	122
322	Targeted Inhibition of p38 Mitogen-activated Protein Kinase Antagonizes Cardiac Injury and Cell Death Following Ischemia-Reperfusion in Vivo. Journal of Biological Chemistry, 2004, 279, 15524-15530.	1.6	202
323	Correction: Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 2004, 167, 985-985.	2.3	0
324	Glycogen Synthase Kinase-3Î ² Regulates Growth, Calcium Homeostasis, and Diastolic Function in the Heart. Journal of Biological Chemistry, 2004, 279, 21383-21393.	1.6	115

#	Article	IF	CITATIONS
325	Calcineurin?NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 2004, 63, 467-475.	1.8	403
326	TOX Provides a Link Between Calcineurin Activation and CD8 Lineage Commitment. Journal of Experimental Medicine, 2004, 199, 1089-1099.	4.2	60
327	Genetic Loss of Calcineurin Blocks Mechanical Overload-induced Skeletal Muscle Fiber Type Switching but Not Hypertrophy. Journal of Biological Chemistry, 2004, 279, 26192-26200.	1.6	160
328	MEK1-ERK2 Signaling Pathway Protects Myocardium From Ischemic Injury In Vivo. Circulation, 2004, 109, 1938-1941.	1.6	203
329	Manipulating Cardiac Contractility in Heart Failure. Circulation, 2004, 109, 150-158.	1.6	112
330	Calcineurin AÂ Is Central to the Expression of the Renal Type II Na/Pi Co-transporter Gene and to the Regulation of Renal Phosphate Transport. Journal of the American Society of Nephrology: JASN, 2004, 15, 2972-2980.	3.0	28
331	Extracellular Signal-Regulated Kinase 2 Interacts with and Is Negatively Regulated by the LIM-Only Protein FHL2 in Cardiomyocytes. Molecular and Cellular Biology, 2004, 24, 1081-1095.	1.1	136
332	PKC-α regulates cardiac contractility and propensity toward heart failure. Nature Medicine, 2004, 10, 248-254.	15.2	551
333	Calcineurin A β Gene Targeting Predisposes the Myocardium to Acute Ischemia-Induced Apoptosis and Dysfunction. Circulation Research, 2004, 94, 91-99.	2.0	77
334	Calcium–calcineurin signaling in the regulation of cardiac hypertrophy. Biochemical and Biophysical Research Communications, 2004, 322, 1178-1191.	1.0	391
335	DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice. Developmental Biology, 2004, 266, 346-360.	0.9	71
336	A mouse model of familial hypertrophic cardiomyopathy caused by a α-tropomyosin mutation. Molecular and Cellular Biochemistry, 2003, 251, 33-42.	1.4	46
337	Deletion of cytosolic phospholipase A2 promotes striated muscle growth. Nature Medicine, 2003, 9, 944-951.	15.2	79
338	c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO Journal, 2003, 22, 5079-5089.	3.5	157
339	Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. Journal of Molecular and Cellular Cardiology, 2003, 35, 1385-1394.	0.9	210
340	Temporal activation of câ€Jun Nâ€ŧerminal kinase in adult transgenic heart via creâ€loxPâ€mediated DNA recombination. FASEB Journal, 2003, 17, 749-751.	0.2	76
341	Altered Skeletal Muscle Phenotypes in Calcineurin Aα and Aβ Gene-Targeted Mice. Molecular and Cellular Biology, 2003, 23, 4331-4343.	1.1	149
342	Requirement of transcription factor NFAT in developing atrial myocardium. Journal of Cell Biology, 2003, 161, 861-874.	2.3	31

#	Article	IF	CITATIONS
343	Requirement of the calcineurin subunit gene canB2 for indirect flight muscle formation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1040-1045.	3.3	30
344	Is Nuclear Factor κB an Attractive Therapeutic Target for Treating Cardiac Hypertrophy?. Circulation, 2003, 108, 638-640.	1.6	61
345	Cross-regulation of Novel Protein Kinase C (PKC) Isoform Function in Cardiomyocytes. Journal of Biological Chemistry, 2003, 278, 14555-14564.	1.6	103
346	Activation of GATA-4 by Serotonin in Pulmonary Artery Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 17525-17531.	1.6	62
347	Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovascular Research, 2003, 57, 320-332.	1.8	59
348	Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. American Journal of Physiology - Cell Physiology, 2003, 284, C562-C570.	2.1	81
349	NFATc3 and NFATc4 Are Required for Cardiac Development and Mitochondrial Function. Circulation Research, 2003, 92, 1305-1313.	2.0	129
350	Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. Journal of Clinical Investigation, 2003, 111, 1475-1486.	3.9	184
351	A friend within the heart: natriuretic peptide receptor signaling. Journal of Clinical Investigation, 2003, 111, 1275-1277.	3.9	68
352	Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. Journal of Clinical Investigation, 2003, 111, 1475-1486.	3.9	265
353	A mouse model of familial hypertrophic cardiomyopathy caused by a $\hat{l}\pm$ -tropomyosin mutation. , 2003, , 33-42.		8
354	A mouse model of familial hypertrophic cardiomyopathy caused by a alpha-tropomyosin mutation. Molecular and Cellular Biochemistry, 2003, 251, 33-42.	1.4	21
355	Requirement of Nuclear Factor of Activated T-cells in Calcineurin-mediated Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 2002, 277, 48617-48626.	1.6	114
356	Reduction ofItoCauses Hypertrophy in Neonatal Rat Ventricular Myocytes. Circulation Research, 2002, 90, 578-585.	2.0	75
357	Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11363-11368.	3.3	254
358	Impaired cardiac hypertrophic response in Calcineurin AÂ-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4586-4591.	3.3	236
359	The Transcription Factors GATA4 and dHAND Physically Interact to Synergistically Activate Cardiac Gene Expression through a p300-dependent Mechanism. Journal of Biological Chemistry, 2002, 277, 24390-24398.	1.6	163
360	Ca2+-dependent Dephosphorylation of Kinesin Heavy Chain on β-Granules in Pancreatic β-Cells. Journal of Biological Chemistry, 2002, 277, 24232-24242.	1.6	91

#	Article	IF	CITATIONS
361	Calcineurin and NFAT4 Induce Chondrogenesis. Journal of Biological Chemistry, 2002, 277, 42214-42218.	1.6	89
362	PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase1/2 (ERK1/2). Journal of Cell Biology, 2002, 156, 905-919.	2.3	185
363	Defective T cell development and function in calcineurin AÂ-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9398-9403.	3.3	168
364	Inhibition of Calcineurin and Sarcolemmal Ca 2+ Influx Protects Cardiac Morphology and Ventricular Function in K v 4.2N Transgenic Mice. Circulation, 2002, 105, 1850-1856.	1.6	58
365	Enhanced myocyte contractility and Ca2+ handling in a calcineurin transgenic model of heart failure. Cardiovascular Research, 2002, 54, 105-116.	1.8	59
366	Cardiac function and electrical remodeling of the calcineurin-overexpressed transgenic mouse. Cardiovascular Research, 2002, 54, 117-132.	1.8	30
367	Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovascular Research, 2002, 53, 806-821.	1.8	96
368	Targeted Disruption of NFATc3 , but Not NFATc4 , Reveals an Intrinsic Defect in Calcineurin-Mediated Cardiac Hypertrophic Growth. Molecular and Cellular Biology, 2002, 22, 7603-7613.	1.1	241
369	Novel and nondetected human signaling protein polymorphisms. Physiological Genomics, 2002, 10, 159-168.	1.0	17
370	Divergent Signaling Pathways Converge on GATA4 to Regulate Cardiac Hypertrophic Gene Expression. Journal of Molecular and Cellular Cardiology, 2002, 34, 611-616.	0.9	58
371	Involvement of Extracellular Signal-Regulated Kinases 1/2 in Cardiac Hypertrophy and Cell Death. Circulation Research, 2002, 91, 776-781.	2.0	354
372	Calcineurin and cardiac hypertrophy: Where have we been? Where are we going?. Journal of Physiology, 2002, 541, 1-8.	1.3	141
373	Cytoplasmic Signaling Pathways That Regulate Cardiac Hypertrophy. Annual Review of Physiology, 2001, 63, 391-426.	5.6	616
374	Retinoic Acid Inhibits Cardiac Neural Crest Migration by Blocking c-Jun N-Terminal Kinase Activation. Developmental Biology, 2001, 232, 351-361.	0.9	37
375	Enhanced Ca2+Channel Currents in Cardiac Hypertrophy Induced by Activation of Calcineurin-dependent Pathway. Journal of Molecular and Cellular Cardiology, 2001, 33, 249-259.	0.9	50
376	Differential Activation of Signal Transduction Pathways in Human Hearts With Hypertrophy Versus Advanced Heart Failure. Circulation, 2001, 103, 670-677.	1.6	395
377	Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiological Genomics, 2001, 6, 19-28.	1.0	111
378	Calcineurin, Mitochondrial Membrane Potential, and Cardiomyocyte Apoptosis. Circulation Research, 2001, 88, 1220-1222.	2.0	56

#	Article	IF	CITATIONS
379	Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes and Development, 2001, 15, 839-844.	2.7	274
380	Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes and Development, 2001, 15, 2702-2719.	2.7	206
381	The Transcription Factor GATA4 Is Activated by Extracellular Signal-Regulated Kinase 1- and 2-Mediated Phosphorylation of Serine 105 in Cardiomyocytes. Molecular and Cellular Biology, 2001, 21, 7460-7469.	1.1	234
382	The Transcription Factors GATA4 and GATA6 Regulate Cardiomyocyte Hypertrophy in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 30245-30253.	1.6	310
383	The Dual-Specificity Phosphatase MKP-1 Limits the Cardiac Hypertrophic Response In Vitro and In Vivo. Circulation Research, 2001, 88, 88-96.	2.0	149
384	Calcineurin Enhances MAPK Phosphatase-1 Expression and p38 MAPK Inactivation in Cardiac Myocytes. Journal of Biological Chemistry, 2001, 276, 15913-15919.	1.6	79
385	Temporally Regulated and Tissue-Specific Gene Manipulations in the Adult and Embryonic Heart Using a Tamoxifen-Inducible Cre Protein. Circulation Research, 2001, 89, 20-25.	2.0	593
386	Hypertrophic defect unmasked by calcineurin expression in asymptomatic tropomodulin overexpressing transgenic mice. Cardiovascular Research, 2000, 46, 90-101.	1.8	11
387	Reply to Revisiting calcineurin and human heart failure. Nature Medicine, 2000, 6, 3-3.	15.2	9
388	Re-evaluating sarcoplasmic reticulum function in heart failure. Nature Medicine, 2000, 6, 942-942.	15.2	35
389	Regulation of MEF2 by p38 MAPK and Its Implication in Cardiomyocyte Biology. Trends in Cardiovascular Medicine, 2000, 10, 19-22.	2.3	101
390	Abnormalities of the Genitourinary Tract in Female Mice Lacking GATA5. Molecular and Cellular Biology, 2000, 20, 5256-5260.	1.1	112
391	Calcineurin Promotes Protein Kinase C and c-Jun NH2-terminal Kinase Activation in the Heart. Journal of Biological Chemistry, 2000, 275, 13571-13579.	1.6	205
392	Calcineurin Expression, Activation, and Function in Cardiac Pressure-Overload Hypertrophy. Circulation, 2000, 101, 2431-2437.	1.6	143
393	Calcineurin and Beyond. Circulation Research, 2000, 87, 731-738.	2.0	217
394	Calcineurin-Mediated Hypertrophy Protects Cardiomyocytes From Apoptosis In Vitro and In Vivo. Circulation Research, 2000, 86, 255-263.	2.0	203
395	A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression. Molecular and Cellular Biology, 2000, 20, 6600-6611.	1.1	271
396	The Zinc Finger-containing Transcription Factors GATA-4, -5, and -6. Journal of Biological Chemistry, 2000, 275, 38949-38952.	1.6	767

#	Article	IF	CITATIONS
397	Direct Activation of a GATA6 Cardiac Enhancer by Nkx2.5: Evidence for a Reinforcing Regulatory Network of Nkx2.5 and GATA Transcription Factors in the Developing Heart. Developmental Biology, 2000, 217, 301-309.	0.9	110
398	Reversal of Cardiac Hypertrophy in Transgenic Disease Models by Calcineurin Inhibition. Journal of Molecular and Cellular Cardiology, 2000, 32, 697-709.	0.9	69
399	A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression. Molecular and Cellular Biology, 2000, 20, 6600-6611.	1.1	22
400	Prevention of Cardiac Hypertrophy by Calcineurin Inhibition. Circulation Research, 1999, 84, 623-632.	2.0	114
401	Calcineurin and human heart failure. Nature Medicine, 1999, 5, 246-247.	15.2	112
402	Pathogenesis of Dilated Cardiomyopathy. American Journal of Pathology, 1999, 155, 2101-2113.	1.9	51
403	Activated Notch Inhibits Myogenic Activity of the MADS-Box Transcription Factor Myocyte Enhancer Factor 2C. Molecular and Cellular Biology, 1999, 19, 2853-2862.	1.1	121
404	A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy. Cell, 1998, 93, 215-228.	13.5	2,388
405	Prevention of Cardiac Hypertrophy in Mice by Calcineurin Inhibition. , 1998, 281, 1690-1693.		421
406	MEF2B Is a Component of a Smooth Muscle-specific Complex That Binds an A/T-rich Element Important for Smooth Muscle Myosin Heavy Chain Gene Expression. Journal of Biological Chemistry, 1998, 273, 1511-1518.	1.6	42
407	Multiple Roles for the MyoD Basic Region in Transmission of Transcriptional Activation Signals and Interaction with MEF2. Molecular and Cellular Biology, 1998, 18, 69-77.	1.1	142
408	Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis Genes and Development, 1997, 11, 1061-1072.	2.7	1,030
409	Defining the regulatory networks for muscle development. Current Opinion in Genetics and Development, 1996, 6, 445-453.	1.5	429
410	Phosphorylation of the MADS-Box Transcription Factor MEF2C Enhances Its DNA Binding Activity. Journal of Biological Chemistry, 1996, 271, 17199-17204.	1.6	99
411	Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell, 1995, 83, 1125-1136.	13.5	765
412	A Series of Mutations in the D-MEF2 Transcription Factor Reveal Multiple Functions in Larval and Adult Myogenesis in Drosophila. Developmental Biology, 1995, 171, 169-181.	0.9	207
413	Detection of 14 HLA-DQB1 alleles by oligotyping. Human Immunology, 1991, 31, 114-122.	1.2	46